Elements of Electromagnetics
Matthew N.O. Sadiku - 1993
The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.
Simply Einstein: Relativity Demystified
Richard Wolfson - 2002
Drawing from years of teaching modern physics to nonscientists, Wolfson explains in a lively, conversational style the simple principles underlying Einstein's theory.Relativity, Wolfson shows, gave us a new view of space and time, opening the door to questions about their flexible nature: Is the universe finite or infinite? Will it expand forever or eventually collapse in a "big crunch"? Is time travel possible? What goes on inside a black hole? How does gravity really work? These questions at the forefront of twenty-first-century physics are all rooted in the profound and sweeping vision of Albert Einstein's early twentieth-century theory. Wolfson leads his readers on an intellectual journey that culminates in a universe made almost unimaginably rich by the principles that Einstein first discovered.
Adventures of a Mathematician
Stanislaw M. Ulam - 1976
As a member of the Los Alamos National Laboratory from 1944 on, Ulam helped to precipitate some of the most dramatic changes of the postwar world. He was among the first to use and advocate computers for scientific research, originated ideas for the nuclear propulsion of space vehicles, and made fundamental contributions to many of today's most challenging mathematical projects. With his wide-ranging interests, Ulam never emphasized the importance of his contributions to the research that resulted in the hydrogen bomb. Now Daniel Hirsch and William Mathews reveal the true story of Ulam's pivotal role in the making of the "Super," in their historical introduction to this behind-the-scenes look at the minds and ideas that ushered in the nuclear age. An epilogue by Françoise Ulam and Jan Mycielski sheds new light on Ulam's character and mathematical originality.
String, Straightedge, and Shadow: The Story of Geometry
Julia E. Diggins - 1965
Julia Diggins masterfully recreates the atmosphere of ancient times, when men, using three simple tools, the string, the straightedge, and the shadow, discovered the basic principles and constructions of elementary geometry. Her book reveals how these discoveries related to the early civilizations of Mesopotamia, Egypt, and Greece.The fabric of the story is woven out of archeological and historical records and legends about the major men of mathematics. By reconstructing the events as they might have happened, Diggins enables the attentive reader to easily follow the pattern of reasoning that leads to an ingenious proof of the Pythagorean theorem, an appreciation of the significance of the Golden Mean in art and architecture, and the construction of the five regular solids.Out of print for 34 years, Julia Diggins' classic book is back and is a must-read for middle school students or for parents helping their children through their first geometry course. You will be fascinated with the graphic illustrations and written depiction of how the knowledge and wisdom of so many cultures helped shape our civilization today. This book is popular with teachers and parents who use Jamie York's Making Math Meaningful curriculum books.
From 0 to Infinity in 26 Centuries: The Extraordinary Story of Maths
Chris Waring - 2012
Book by Waring, Chris
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
Sharon Bertsch McGrayne - 2011
To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Hacking Matter: Levitating Chairs, Quantum Mirages, And The Infinite Weirdness Of Programmable Atoms
Wil McCarthy - 2003
But it's coming, and when it does, it will change our lives as much as any invention ever has. Imagine being able to program matter itself-to change it, with the click of a cursor, from hard to soft, from paper to stone, from fluorescent to super-reflective to invisible. Supported by organizations ranging from Levi Strauss and IBM to the Defense Department, solid-state physicists in renowned laboratories are working to make it a reality. In this dazzling investigation, Wil McCarthy visits the laboratories and talks with the researchers who are developing this extraordinary technology, describes how they are learning to control it, and tells us where all this will lead. The possibilities are truly astonishing.
Field and Wave Electromagnetics
David K. Cheng - 1982
These include applications drawn from important new areas of technology such as optical fibers, radome design, satellite communication, and microstrip lines. There is also added coverage of several new topics, including Hall effect, radar equation and scattering cross section, transients in transmission lines, waveguides and circular cavity resonators, wave propagation in the ionosphere, and helical antennas. New exercises, new problems, and many worked-out examples make this complex material more accessible to students.
Who Is Fourier? a Mathematical Adventure
Transnational College of Lex - 1995
This is done in a way that is not only easy to understand, but is actually fun! Professors and engineers, with high school and college students following closely, comprise the largest percentage of our readers. It is a must-have for anyone interested in music, mathematics, physics, engineering, or complex science. Dr. Yoichiro Nambu, 2008 Nobel Prize Winner in Physics, served as a senior adviser to the English version of Who is Fourier? A Mathematical Adventure.
How to Ace Calculus: The Streetwise Guide
Colin Conrad Adams - 1998
Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.
Spacetime Physics
Edwin F. Taylor - 1966
Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars. The chapter on general relativity with new material on gravity waves, black holes, and cosmology.
The Physics of Climate Change
Lawrence M. Krauss - 2021
Here you’ll find the facts, the processes, the physics of our complex and changing climate, but delivered with eloquence and urgency. Lawrence Krauss writes with a clarity that transcends mere politics. Prose and poetry were never better bedfellows.” —Ian McEwan, Booker Prize-winning author of Solar and Machines Like Me “Lawrence Krauss has written the ideal book for anyone interested in understanding the science of global warming. It is at once elegant, rigorous, and timely.”—Elizabeth Kolbert, staff writer, The New Yorker, and Pulitzer prize-winning author of The Sixth Extinction “A brief, brilliant, and charming summary of what physicists know about climate change and how they learned it.” —Sheldon Glashow, Nobel Laureate in Physics, Metcalf Distinguished Professor Emeritus, Boston University “The distinguished scientist Lawrence Krauss turns his penetrating gaze on the most pressing existential threat facing our world: climate change. It is brimming with information lucidly analysed. Such hope as there is lies in science, and a physicist of Dr. Krauss’s imaginative versatility is unusually qualified to offer it.” —Richard Dawkins, author of The Blind Watchmaker and Science in the Soul “Lucid and gripping, this study of the most severe challenge humans have ever faced leads the reader from the basic physics of climate change to recognition of the damage that humans have already caused and on to the prospects that lie ahead if we do not change course soon.” —Noam Chomsky, Laureate Professor, University of Arizona, author of Internationalism or Extinction? “Lawrence Krauss tells the story of climate change with erudition, urgency, and passion. It is our great good luck that one of our most brilliant scientists is also such a gifted writer. This book will change the way we think about the future.” —Jennifer Finney Boylan, author of Good Boy and She’s Not There “Everything on climate change that I’ve seen is either dumbed down and bossy or written for other climate scientists. I’ve been looking for a book that can let me, a layperson, understand the science. This book does just what I was looking for. It is important.” —Penn Jillette, Magician, author of Presto! and God, No! “The renowned physicist Lawrence Krauss makes the science behind one of the most important issues of our time accessible to all.” —Richard C. J. Somerville, Distinguished Professor Emeritus, Scripps Institution of Oceanography, University of California, San Diego “Lawrence Krauss is a fine physicist, a talented writer, and a scientist deeply engaged with public affairs. His book deserves wide readership. The book’s eloquent exposition of the science and the threats should enlighten all readers and motivate them to an urgent concern about our planet’s future.” —Lord Martin Rees, Astronomer Royal, former president of the Royal Society, author of On the Future: Prospects for Humanity
Relativity: The Special and the General Theory
Albert Einstein - 1916
Having just completed his masterpiece, The General Theory of Relativity—which provided a brand-new theory of gravity and promised a new perspective on the cosmos as a whole—he set out at once to share his excitement with as wide a public as possible in this popular and accessible book.Here published for the first time as a Penguin Classic, this edition of Relativity features a new introduction by bestselling science author Nigel Calder.
Mathematics: Is God Silent?
James Nickel - 2001
The addition of this book is a must for all upper-level Christian school curricula and for college students and adults interested in math or related fields of science and religion. It will serve as a solid refutation for the claim, often made in court, that mathematics is one subject, which cannot be taught from a distinctively Biblical perspective.
Pythagoras's Trousers: God, Physics, and the Gender War
Margaret Wertheim - 1995
From its inception, Margaret Wertheim shows, physics has been an overwhelmingly male-dominated activity; she argues that gender inequity in physics is a result of the religious origins of the enterprise.Pythagoras' Trousers is a highly original history of one of science's most powerful disciplines. It is also a passionate argument for the need to involve both women and men in the process of shaping the technologies from the next generation of physicists.