Book picks similar to
Mathematical Models in Population Biology and Epidemiology by Fred Brauer
mathematics
maths-books
mmath
nonfiction-science
The Psychology of Invention in the Mathematical Field
Jacques Hadamard - 1945
Role of the unconscious in invention; the medium of ideas — do they come to mind in words? in pictures? in mathematical terms? Much more. "It is essential for the mathematician, and the layman will find it good reading." — Library Journal.
Algebra
Michael Artin - 1991
Linear algebra is tightly integrated into the text.
The Principles of Mathematics
Bertrand Russell - 1903
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.
Time Reborn: From the Crisis in Physics to the Future of the Universe
Lee Smolin - 2013
You experience it passing every day when you watch clocks tick, bread toast, and children grow. But most physicists see things differently, from Newton to Einstein to today’s quantum theorists. For them, time isn’t real. You may think you experience time passing, but they say it’s just an illusion.Lee Smolin, author of the controversial bestseller The Trouble with Physics, argues this limited notion of time is holding physics back. It’s time for a major revolution in scientific thought. The reality of time could be the key to the next big breakthrough in theoretical physics.What if the laws of physics themselves were not timeless? What if they could evolve? Time Reborn offers a radical new approach to cosmology that embraces the reality of time and opens up a whole new universe of possibilties. There are few ideas that, like our notion of time, shape our thinking about literally everything, with major implications for physics and beyond—from climate change to the economic crisis. Smolin explains in lively and lucid prose how the true nature of time impacts our world.
The Oxford Book of Modern Science Writing
Richard DawkinsD'Arcy Wentworth Thompson - 2008
Readers will find excerpts from bestsellers such as Douglas R. Hofstadter's Gödel, Escher, Bach, Francis Crick's Life Itself, Loren Eiseley's The Immense Journey, Daniel Dennett's Darwin's Dangerous Idea, and Rachel Carson's The Sea Around Us. There are classic essays ranging from J.B.S. Haldane's "On Being the Right Size" and Garrett Hardin's "The Tragedy of the Commons" to Alan Turing's "Computing Machinery and Intelligence" and Albert Einstein's famed New York Times article on "Relativity." And readers will also discover lesser-known but engaging pieces such as Lewis Thomas's "Seven Wonders of Science," J. Robert Oppenheimer on "War and Physicists," and Freeman Dyson's memoir of studying under Hans Bethe.A must-read volume for all science buffs, The Oxford Book of Modern Science Writing is a rich and vibrant anthology that captures the poetry and excitement of scientific thought and discovery.One of New Scientist's Editor's Picks for 2008.
The Mind’s I: Fantasies and Reflections on Self and Soul
Douglas R. Hofstadter - 1981
From verbalizing chimpanzees to scientific speculations involving machines with souls, from the mesmerizing, maze-like fiction of Borges to the tantalizing, dreamlike fiction of Lem and Princess Ineffable, her circuits glowing read and gold, The Mind's I opens the mind to the Black Box of fantasy, to the windfalls of reflection, to new dimensions of exciting possibilities."Ever since David Hume declared in the 18th century that the Self is only a heap of perceptions, the poor Ego has been in a shaky conditions indeed...Mind and consciousness becomes dispensable items in our accounts of reality, ghosts in the bodily machine...Yet there are indications here and there that the tide may be tuming...and the appearance of The Mind's I, edited by Douglas R. Hofstadter and Daniel C. Dennett, seems a welcome sign of change." William Barrett, The New York Times Book Review
Numbers: A Very Short Introduction
Peter M. Higgins - 2010
In this Very Short Introduction, Peter M. Higgins, a renowned popular-science writer, unravels the world of numbers, demonstrating its richness and providing an overview of all the number types that feature in modern science and mathematics. Indeed, Higgins paints a crystal-clear picture of the number world, showing how the modern number system matured over many centuries, and introducing key concepts such as integers, fractions, real and imaginary numbers, and complex numbers. Higgins sheds light on such fascinating topics as the series of primes, describing how primes are now used to encrypt confidential data on the internet. He also explores the infinite nature of number collections and explains how the so-called real numbers knit together to form the continuum of the number line. Written in the fashion of Higgins' highly popular science paperbacks, Numbers accurately explains the nature of numbers and how so-called complex numbers and number systems are used in calculations that arise in real problems.
Einstein's War: How Relativity Triumphed Amid the Vicious Nationalism of World War I
Matthew Stanley - 2019
The neatly printed equations on the scrap of paper outlined his world-changing theory of general relativity, the first complete revision of our conception of the universe since Isaac Newton.Until then, Einstein's masterpiece of time and space had been trapped behind the physical and ideological lines of battle, unknown. Many Britons were rejecting anything German, but Eddington realized the importance of the letter: perhaps Einstein's esoteric theory could not only change the foundations of science but also lead to international co-operation in a time of brutal war.Few recognize how the Great War, the industrialized slaughter that bled Europe from 1914 to 1918, shaped Einstein's life and work. While Einstein never held a rifle, he formulated general relativity blockaded in Berlin, literally starving. His name is now synonymous with 'genius', but it was not an easy road.Einstein spent a decade creating relativity and his ascent to global celebrity owed much to against-the-odds international collaboration, including Eddington's globe-spanning expedition of 1919 - two years before they finally met - to catch a fleeting solar eclipse for a rare opportunity to confirm Einstein's bold prediction that light has weight.We usually think of scientific discovery as a flash of individual inspiration, but here we see it is the result of hard work, gambles and wrong turns. Einstein's War is a celebration of what science can offer when bigotry and nationalism are defeated. Using previously unknown sources and written like a thriller, it shows relativity being built brick-by-brick in front of us, as it happened 100 years ago.
Adventures of a Mathematician
Stanislaw M. Ulam - 1976
As a member of the Los Alamos National Laboratory from 1944 on, Ulam helped to precipitate some of the most dramatic changes of the postwar world. He was among the first to use and advocate computers for scientific research, originated ideas for the nuclear propulsion of space vehicles, and made fundamental contributions to many of today's most challenging mathematical projects. With his wide-ranging interests, Ulam never emphasized the importance of his contributions to the research that resulted in the hydrogen bomb. Now Daniel Hirsch and William Mathews reveal the true story of Ulam's pivotal role in the making of the "Super," in their historical introduction to this behind-the-scenes look at the minds and ideas that ushered in the nuclear age. An epilogue by Françoise Ulam and Jan Mycielski sheds new light on Ulam's character and mathematical originality.
Linear Algebra
Georgi E. Shilov - 1971
Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.
Real Analysis
H.L. Royden - 1963
Dealing with measure theory and Lebesque integration, this is an introductory graduate text.
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
Colin Conrad Adams - 1994
The study of knots has led to important applications in DNA research and the synthesis of new molecules, and has had a significant impact on statistical mechanics and quantum field theory. Colin Adams’s The Knot Book is the first book to make cutting-edge research in knot theory accessible to a non-specialist audience. Starting with the simplest knots, Adams guides readers through increasingly more intricate twists and turns of knot theory, exploring problems and theorems mathematicians can now solve, as well as those that remain open. He also explores how knot theory is providing important insights in biology, chemistry, physics, and other fields. The new paperback edition has been updated to include the latest research results, and includes hundreds of illustrations of knots, as well as worked examples, exercises and problems. With a simple piece of string, an elementary mathematical background, and The Knot Book, anyone can start learning about some of the most advanced ideas in contemporary mathematics.
On Formally Undecidable Propositions of Principia Mathematica and Related Systems
Kurt Gödel - 1992
Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.
An Introduction to Mathematics
Alfred North Whitehead - 1958
This distinguished little book is a brisk introduction to a series of mathematical concepts, a history of their development, and a concise summary of how today's reader may use them.
Linear Algebra
Stephen H. Friedberg - 1979
This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.