Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

The REST API Design Handbook


George Reese - 2012
    The RESTful approach to web services design is rapidly become the approach of choice. Unfortunately, too few people have truly solid REST API design skills, and discussions of REST can become bogged down in dry theory.The REST API Design Handbook is a simple, practical guide to aid software engineers and software architects create lasting, scalable APIs based on REST architectural principles. The book provides a sound foundation in discussing the constraints that define a REST API. It quickly goes beyond that into the practical aspects of implementing such an API in the real world.Written by cloud computing expert George Reese, The REST API Design Handbook reflects hands on work in consuming many different third party APIs as well the development of REST-based web services APIs. It addresses all of the debates the commonly arise while creating these APIs. Subjects covered include:* REST architectural constraints* Using HTTP methods and response codes in an API* Authenticating RESTful API calls* Versioning* Asynchronous Operations* Pagination and Streaming* Polling and Push Notifications* Rate Limiting

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Access 2007: The Missing Manual


Matthew MacDonald - 2006
    It runs on PCs rather than servers and is ideal for small- to mid-sized businesses and households. But Access is still intimidating to learn. It doesn't help that each new version crammed in yet another set of features; so many, in fact, that even the pros don't know where to find them all. Access 2007 breaks this pattern with some of the most dramatic changes users have seen since Office 95. Most obvious is the thoroughly redesigned user interface, with its tabbed toolbar (or "Ribbon") that makes features easy to locate and use. The features list also includes several long-awaited changes. One thing that hasn't improved is Microsoft's documentation. To learn the ins and outs of all the features in Access 2007, Microsoft merely offers online help.Access 2007: The Missing Manual was written from the ground up for this redesigned application. You will learn how to design complete databases, maintain them, search for valuable nuggets of information, and build attractive forms for quick-and-easy data entry. You'll even delve into the black art of Access programming (including macros and Visual Basic), and pick up valuable tricks and techniques to automate common tasks -- even if you've never touched a line of code before. You will also learn all about the new prebuilt databases you can customize to fit your needs, and how the new complex data feature will simplify your life. With plenty of downloadable examples, this objective and witty book will turn an Access neophyte into a true master.

Making Games with Python & Pygame


Al Sweigart - 2012
    Each chapter gives you the complete source code for a new game and teaches the programming concepts from these examples. The book is available under a Creative Commons license and can be downloaded in full for free from http: //inventwithpython.com/pygame This book was written to be understandable by kids as young as 10 to 12 years old, although it is great for anyone of any age who has some familiarity with Python.

Embedded Android: Porting, Extending, and Customizing


Karim Yaghmour - 2011
    You'll also receive updates when significant changes are made, as well as the final ebook version. Embedded Android is for Developers wanting to create embedded systems based on Android and for those wanting to port Android to new hardware, or creating a custom development environment. Hackers and moders will also find this an indispensible guide to how Android works.

How to Create a Mind: The Secret of Human Thought Revealed


Ray Kurzweil - 2012
    In How to Create a Mind, Kurzweil presents a provocative exploration of the most important project in human-machine civilization—reverse engineering the brain to understand precisely how it works and using that knowledge to create even more intelligent machines.Kurzweil discusses how the brain functions, how the mind emerges from the brain, and the implications of vastly increasing the powers of our intelligence in addressing the world’s problems. He thoughtfully examines emotional and moral intelligence and the origins of consciousness and envisions the radical possibilities of our merging with the intelligent technology we are creating.Certain to be one of the most widely discussed and debated science books of the year, How to Create a Mind is sure to take its place alongside Kurzweil’s previous classics which include Fantastic Voyage: Live Long Enough to Live Forever and The Age of Spiritual Machines.

Data Mining: Practical Machine Learning Tools and Techniques


Ian H. Witten - 1999
    This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915            0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)

Introduction to Machine Learning with Python: A Guide for Data Scientists


Andreas C. Müller - 2015
    If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills

Probabilistic Robotics


Sebastian Thrun - 2005
    Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.

DevOps Troubleshooting: Linux Server Best Practices


Kyle Rankin - 2012
    It has saved me hours in troubleshooting complicated operations problems." -Trotter Cashion, cofounder, Mashion DevOps can help developers, QAs, and admins work together to solve Linux server problems far more rapidly, significantly improving IT performance, availability, and efficiency. To gain these benefits, however, team members need common troubleshooting skills and practices. In DevOps Troubleshooting: Linux Server Best Practices , award-winning Linux expert Kyle Rankin brings together all the standardized, repeatable techniques your team needs to stop finger-pointing, collaborate effectively, and quickly solve virtually any Linux server problem. Rankin walks you through using DevOps techniques to troubleshoot everything from boot failures and corrupt disks to lost email and downed websites. You'll master indispensable skills for diagnosing high-load systems and network problems in production environments. Rankin shows how to Master DevOps' approach to troubleshooting and proven Linux server problem-solving principles Diagnose slow servers and applications by identifying CPU, RAM, and Disk I/O bottlenecks Understand healthy boots, so you can identify failure points and fix them Solve full or corrupt disk issues that prevent disk writes Track down the sources of network problems Troubleshoot DNS, email, and other network services Isolate and diagnose Apache and Nginx Web server failures and slowdowns Solve problems with MySQL and Postgres database servers and queries Identify hardware failures-even notoriously elusive intermittent failures

Kotlin for Android Developers: Learn Kotlin the easy way while developing an Android App


Antonio Leiva - 2016
    

The Little Go Book


Karl Seguin - 2014
    It's aimed at developers who might not be quite comfortable with the idea of pointers and static typing.http://openmymind.net/The-Little-Go-B...

Algorithms Unlocked


Thomas H. Cormen - 2013
    For anyone who has ever wondered how computers solve problems, an engagingly written guide for nonexperts to the basics of computer algorithms.