AI Superpowers: China, Silicon Valley, and the New World Order


Kai-Fu Lee - 2018
    Kai-Fu Lee—one of the world’s most respected experts on AI and China—reveals that China has suddenly caught up to the US at an astonishingly rapid and unexpected pace.In AI Superpowers, Kai-Fu Lee argues powerfully that because of these unprecedented developments in AI, dramatic changes will be happening much sooner than many of us expected. Indeed, as the US-Sino AI competition begins to heat up, Lee urges the US and China to both accept and to embrace the great responsibilities that come with significant technological power.Most experts already say that AI will have a devastating impact on blue-collar jobs. But Lee predicts that Chinese and American AI will have a strong impact on white-collar jobs as well. Is universal basic income the solution? In Lee’s opinion, probably not.  But he provides a clear description of which jobs will be affected and how soon, which jobs can be enhanced with AI, and most importantly, how we can provide solutions to some of the most profound changes in human history that are coming soon.

Artificial Intelligence and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies


Steven Finlay - 2021
    They are being applied across many industries to increase profits, reduce costs, save lives and improve customer experiences. Consequently, organizations that understand these tools and know how to use them are benefiting at the expense of their rivals.Artificial Intelligence and Machine Learning for Business cuts through the hype and technical jargon that is often associated with these subjects. It delivers a simple and concise introduction for managers and business people. The focus is on practical application and how to work with technical specialists (data scientists) to maximize the benefits of these technologies.This revised and fully updated edition contains several new sections and chapters, covering a broader set of topics than before, but retains the no-nonsense style of the original.Steven Finlay is a data scientist and author with more than 20 years’ experience of developing practical, business focused, analytical solutions. He holds a PhD in management science and is an honorary research fellow at Lancaster University in the UK.

Data Science


John D. Kelleher - 2018
    Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges.It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Learn Python 3 the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code (Zed Shaw's Hard Way Series)


Zed A. Shaw - 2017
    

Successful Business Intelligence: Secrets to Making BI a Killer App


Cindi Howson - 2007
    Learn about the components of a BI architecture, how to choose the appropriate tools and technologies, and how to roll out a BI strategy throughout the organisation.

Advances in Financial Machine Learning


Marcos López de Prado - 2018
    Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins


Garry Kasparov - 2017
    It was the dawn of a new era in artificial intelligence: a machine capable of beating the reigning human champion at this most cerebral game. That moment was more than a century in the making, and in this breakthrough book, Kasparov reveals his astonishing side of the story for the first time. He describes how it felt to strategize against an implacable, untiring opponent with the whole world watching, and recounts the history of machine intelligence through the microcosm of chess, considered by generations of scientific pioneers to be a key to unlocking the secrets of human and machine cognition. Kasparov uses his unrivaled experience to look into the future of intelligent machines and sees it bright with possibility. As many critics decry artificial intelligence as a menace, particularly to human jobs, Kasparov shows how humanity can rise to new heights with the help of our most extraordinary creations, rather than fear them. Deep Thinking is a tightly argued case for technological progress, from the man who stood at its precipice with his own career at stake.

Learning Python


Mark Lutz - 2003
    Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.

PHP 6 and MySQL 5 for Dynamic Web Sites: Visual Quickpro Guide


Larry Ullman - 2007
    With step-by-step instructions, complete scripts, and expert tips to guide readers, this work gets right down to business - after grounding readers with separate discussions of first the scripting language (PHP) and then the database program (MySQL), it goes on to cover security, sessions and cookies, and using additional Web tools.

Learning Ruby


Michael J. Fitzgerald - 2007
    Written for both experienced and new programmers alike, Learning Ruby is a just-get-in-and-drive book -- a hands-on tutorial that offers lots of Ruby programs and lets you know how and why they work, just enough to get you rolling down the road. Interest in Ruby stems from the popularity of Rails, the web development framework that's attracting new devotees and refugees from Java and PHP. But there are plenty of other uses for this versatile language. The best way to learn is to just try the code! You'll find examples on nearly every page of this book that you can imitate and hack. Briefly, this book:Outlines many of the most important features of Ruby Demonstrates how to use conditionals, and how to manipulate strings in Ruby. Includes a section on regular expressions Describes how to use operators, basic math, functions from the Math module, rational numbers, etc. Talks you through Ruby arrays, and demonstrates hashes in detail Explains how to process files with Ruby Discusses Ruby classes and modules (mixins) in detail, including a brief introduction to object-oriented programming (OOP) Introduces processing XML, the Tk toolkit, RubyGems, reflection, RDoc, embedded Ruby, metaprogramming, exception handling, and other topics Acquaints you with some of the essentials of Rails, and includes a short Rails tutorial. Each chapter concludes with a set of review questions, and appendices provide you with a glossary of terms related to Ruby programming, plus reference material from the book in one convenient location. If you want to take Ruby out for a drive, Learning Ruby holds the keys.

Learning SQL


Alan Beaulieu - 2005
    If you're working with a relational database--whether you're writing applications, performing administrative tasks, or generating reports--you need to know how to interact with your data. Even if you are using a tool that generates SQL for you, such as a reporting tool, there may still be cases where you need to bypass the automatic generation feature and write your own SQL statements.To help you attain this fundamental SQL knowledge, look to "Learning SQL," an introductory guide to SQL, designed primarily for developers just cutting their teeth on the language."Learning SQL" moves you quickly through the basics and then on to some of the more commonly used advanced features. Among the topics discussed: The history of the computerized databaseSQL Data Statements--those used to create, manipulate, and retrieve data stored in your database; example statements include select, update, insert, and deleteSQL Schema Statements--those used to create database objects, such as tables, indexes, and constraintsHow data sets can interact with queriesThe importance of subqueriesData conversion and manipulation via SQL's built-in functionsHow conditional logic can be used in Data StatementsBest of all, "Learning SQL" talks to you in a real-world manner, discussing various platform differences that you're likely to encounter and offering a series of chapter exercises that walk you through the learning process. Whenever possible, the book sticks to the features included in the ANSI SQL standards. This means you'll be able to apply what you learn to any of several different databases; the book covers MySQL, Microsoft SQL Server, and Oracle Database, but the features and syntax should apply just as well (perhaps with some tweaking) to IBM DB2, Sybase Adaptive Server, and PostgreSQL.Put the power and flexibility of SQL to work. With "Learning SQL" you can master this important skill and know that the SQL statements you write are indeed correct.

Forecasting: Principles and Practice


Rob J. Hyndman - 2013
    Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

Laravel: Up and Running: A Framework for Building Modern PHP Apps


Matt Stauffer - 2016
    This rapid application development framework and its vast ecosystem of tools let you quickly build new sites and applications with clean, readable code. With this practical guide, Matt Stauffer--a leading teacher and developer in the Laravel community--provides the definitive introduction to one of today's most popular web frameworks.The book's high-level overview and concrete examples will help experienced PHP web developers get started with Laravel right away. By the time you reach the last page, you should feel comfortable writing an entire application in Laravel from scratch.Dive into several features of this framework, including:Blade, Laravel's powerful, custom templating toolTools for gathering, validating, normalizing, and filtering user-provided dataLaravel's Eloquent ORM for working with the application's databasesThe Illuminate request object, and its role in the application lifecyclePHPUnit, Mockery, and PHPSpec for testing your PHP codeLaravel's tools for writing JSON and RESTful APIsInterfaces for file system access, sessions, cookies, caches, and searchTools for implementing queues, jobs, events, and WebSocket event publishingLaravel's specialty packages: Scout, Passport, Cashier, Echo, Elixir, Valet, and Socialite

Multiple View Geometry in Computer Vision


Richard Hartley - 2000
    This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9