Book picks similar to
Statistical Language Learning by Eugene Charniak
linguistics
science
reference
non-fiction
The Intelligent Web: Search, Smart Algorithms, and Big Data
Gautam Shroff - 2013
These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.
Intermediate Perl
Randal L. Schwartz - 2003
One slogan of Perl is that it makes easy things easy and hard things possible. "Intermediate Perl" is about making the leap from the easy things to the hard ones.Originally released in 2003 as "Learning Perl Objects, References, and Modules" and revised and updated for Perl 5.8, this book offers a gentle but thorough introduction to intermediate programming in Perl. Written by the authors of the best-selling "Learning Perl," it picks up where that book left off. Topics include: Packages and namespacesReferences and scopingManipulating complex data structuresObject-oriented programmingWriting and using modulesTesting Perl codeContributing to CPANFollowing the successful format of "Learning Perl," we designed each chapter in the book to be small enough to be read in just an hour or two, ending with a series of exercises to help you practice what you've learned. To use the book, you just need to be familiar with the material in "Learning Perl" and have ambition to go further.Perl is a different language to different people. It is a quick scripting tool for some, and a fully-featured object-oriented language for others. It is used for everything from performing quick global replacements on text files, to crunching huge, complex sets of scientific data that take weeks to process. Perl is what you make of it. But regardless of what you use Perl for, this book helps you do it more effectively, efficiently, and elegantly."Intermediate Perl" is about learning to use Perl as a programming language, and not just a scripting language. This is the book that turns the Perl dabbler into the Perl programmer.
Understanding Computers and Cognition: A New Foundation for Design
Terry Winograd - 1986
This volume is a theoretical and practical approach to the design of computer technology.
From Mathematics to Generic Programming
Alexander A. Stepanov - 2014
If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
The Meme Machine
Susan Blackmore - 1999
The meme is also one of the most important--and controversial--concepts to emerge since 'The Origin of the Species' appeared nearly 150 years ago.In 'The Meme Machine' Susan Blackmore boldly asserts: "Just as the design of our bodies can be understood only in terms of natural selection, so the design of our minds can be understood only in terms of memetic selection." Indeed, Blackmore shows that once our distant ancestors acquired the crucial ability to imitate, a second kind of natural selection began, a survival of the fittest amongst competing ideas and behaviors. Ideas and behaviors that proved most adaptive - making tools, for example, or using language--survived and flourished, replicating themselves in as many minds as possible. These memes then passed themselves on from generation to generation by helping to ensure that the genes of those who acquired them also survived and reproduced. Applying this theory to many aspects of human life, Blackmore offers brilliant explanations for why we live in cities, why we talk so much, why we can't stop thinking, why we behave altruistically, how we choose our mates, and much more.With controversial implications for our religious beliefs, our free will, our very sense of "self," 'The Meme Machine' offers a provocative theory everyone will soon be talking about.
Mathematical Statistics and Data Analysis
John A. Rice - 1988
The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts which are set in abstract settings.
Clean Code: A Handbook of Agile Software Craftsmanship
Robert C. Martin - 2007
But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.
Introducing Microsoft Power BI
Alberto Ferrari - 2016
Stay in the know, spot trends as they happen, and push your business to new limits. This e-book introduces Microsoft Power BI basics through a practical, scenario-based guided tour of the tool, showing you how to build analytical solutions using Power BI. Get an overview of Power BI, or dig deeper and follow along on your PC using the book's examples.
Physics for Scientists and Engineers, Volume 2
Raymond A. Serway - 1982
Raymond Serway, Robert Beichner, and contributing author John W. Jewett present a strong problem-solving approach that is further enhanced through increased realism in worked examples. Problem-solving strategies and hints allow students to develop a systematic approach to completing homework problems. The outstanding ancillary package includes full multimedia support, online homework, and a content-rich Web site that provides extensive support for instructors and students. The CAPA (Computer-assisted Personalized Approach), WebAssign, and University of Texas homework delivery systems give instructors flexibility in assigning online homework.
Hacker's Delight
Henry S. Warren Jr. - 2002
Aiming to tell the dark secrets of computer arithmetic, this title is suitable for library developers, compiler writers, and lovers of elegant hacks.
How to Count (Programming for Mere Mortals, #1)
Steven Frank - 2011
unsigned numbers- Floating point and fixed point arithmeticThis short, easily understood book will quickly get you thinking like a programmer.
The Pattern on the Stone: The Simple Ideas that Make Computers Work
William Daniel Hillis - 1998
What they don't realize—and what Daniel Hillis's short book brilliantly demonstrates—is that computers' seemingly complex operations can be broken down into a few simple parts that perform the same simple procedures over and over again.Computer wizard Hillis offers an easy-to-follow explanation of how data is processed that makes the operations of a computer seem as straightforward as those of a bicycle. Avoiding technobabble or discussions of advanced hardware, the lucid explanations and colorful anecdotes in The Pattern on the Stone go straight to the heart of what computers really do.Hillis proceeds from an outline of basic logic to clear descriptions of programming languages, algorithms, and memory. He then takes readers in simple steps up to the most exciting developments in computing today—quantum computing, parallel computing, neural networks, and self-organizing systems.Written clearly and succinctly by one of the world's leading computer scientists, The Pattern on the Stone is an indispensable guide to understanding the workings of that most ubiquitous and important of machines: the computer.
The Drunkard's Walk: How Randomness Rules Our Lives
Leonard Mlodinow - 2008
From the classroom to the courtroom and from financial markets to supermarkets, Mlodinow's intriguing and illuminating look at how randomness, chance, and probability affect our daily lives will intrigue, awe, and inspire.
Bayes' Rule: A Tutorial Introduction to Bayesian Analysis
James V. Stone - 2013
Discovered by an 18th century mathematician and preacher, Bayes' rule is a cornerstone of modern probability theory. In this richly illustrated book, intuitive visual representations of real-world examples are used to show how Bayes' rule is actually a form of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for novices who wish to gain an intuitive understanding of Bayesian analysis. As an aid to understanding, online computer code (in MatLab, Python and R) reproduces key numerical results and diagrams.Stone's book is renowned for its visually engaging style of presentation, which stems from teaching Bayes' rule to psychology students for over 10 years as a university lecturer.