Elementary Solid State Physics: Principles and Applications


M. Ali Omar - 1975
    I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.

Helgoland: The World of Quantum Theory


Carlo Rovelli - 2020
    In Helgoland, he examines the enduring enigma of quantum theory. The quantum world Rovelli describes is as beautiful as it is unnerving.Helgoland is a treeless island in the North Sea where the twenty-three-year-old Werner Heisenberg made the crucial breakthrough for the creation of quantum mechanics, setting off a century of scientific revolution. Full of alarming ideas (ghost waves, distant objects that seem to be magically connected, cats that appear both dead and alive), quantum physics has led to countless discoveries and technological advancements. Today our understanding of the world is based on this theory, yet it is still profoundly mysterious.As scientists and philosophers continue to fiercely debate the meaning of the theory, Rovelli argues that its most unsettling contradictions can be explained by seeing the world as fundamentally made of relationships rather than substances. We and everything around us exist only in our interactions with one another. This bold idea suggests new directions for thinking about the structure of reality and even the nature of consciousness.Rovelli makes learning about quantum mechanics an almost psychedelic experience. Shifting our perspective once again, he takes us on a riveting journey through the universe so we can better comprehend our place in it.

Big Bang: The Origin of the Universe


Simon Singh - 2004
    In this amazingly comprehensible history of the universe, Simon Singh decodes the mystery behind the Big Bang theory, lading us through the development of one of the most extraordinary, important, and awe-inspiring theories in science.

Measuring the Universe: Our Historic Quest to Chart the horizons of Space and Time


Kitty Ferguson - 1900
    Today, scientists are attempting to measure the entire universe and to determine its origin. Although the methods have changed, the quest to chart the horizons of space and time continues to be one of the great adventures of science.Measuring the Universe is an eloquent chronicle of the men and women– from Aristarchus to Cassini, Sir Isaac Newton to Henrietta Leavitt and Stephen Hawking–who have gradually unlocked the mysteries of "how far" and in so doing have changed our ideas about the size and nature of the universe and our place in it. Kitty Ferguson reveals their methods to have been as inventive as their results were–and are–eye-opening. Advances such as Copernicus's revolutionary insights about the arrangement of the solar system, William Herschel's meticulous creation of the first three-dimensional map of the universe, and Edwin Hubble's astonishing discovery that the universe is expanding have by turns revolutionized our concept of the universe. Connecting centuries of breakthroughs with the political and cultural events surrounding them, Ferguson makes astronomy part of the sweep of history.To measure the seemingly immeasurable, scientists have always pushed the boundaries of the imagination–today, for example, facing the paradox of an ever-expanding universe that doesn't appear to expand into anything. In Kitty Fergeson's skillfill hands, the unimaginable becomes accessible and the splendid quest something we all can share.

Philosophy of Physics: Space and Time


Tim Maudlin - 2012
    Maudlin explains special relativity using a geometrical approach, emphasizing intrinsic space-time structure rather than coordinate systems or reference frames. He gives readers enough detail about special relativity to solve concrete physical problems while presenting general relativity in a more qualitative way, with an informative discussion of the geometrization of gravity, the bending of light, and black holes. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed of light, time travel, the direction of time, and more.Introduces nonphysicists to the philosophical foundations of space-time theoryProvides a broad historical overview, from Aristotle to EinsteinExplains special relativity geometrically, emphasizing the intrinsic structure of space-timeCovers the Twins Paradox, Galilean relativity, time travel, and moreRequires only basic algebra and no formal knowledge of physicsTim Maudlin is professor of philosophy at New York University. His books include The Metaphysics within Physics and Quantum Non-Locality and Relativity.

Essays in Science


Albert Einstein - 1934
    That unfortunate situation began to change when Einstein published several of the papers and speeches contained in this book which explain the central core of the theory in clear and often beautiful language accessible to any interested reader.In addition to lucid explications of both the Special and General theories, Einstein holds forth on the principles of research, the nature of scientific truth, and the method of theoretical physics. He also offers acute analyses and appreciation of the work of such giants as Johannes Kepler, Isaac Newton, Clerk Maxwell, and Niels Bohr.

The Philosophy of Space and Time


Hans Reichenbach - 1957
    A brilliantly clear and penetrating exposition of developments in physical science and mathematics brought about by the advent of non-Euclidean geometries, including in-depth coverage of the foundations of geometry, the theory of time, Einstein's theory of relativity and its consequences, other key topics.

The Universe: Leading Scientists Explore the Origin, Mysteries, and Future of the Cosmos


John Brockman - 2012
    John Brockman brings together the world’s best-known physicists and science writers—including Brian Greene, Walter Isaacson, Nobel Prize-winners Murray Gell-Mann and Frank Wilczek, and Brian Cox—to explain the universe in all wondrous splendor.In Universe, today’s most influential science writers explain the science behind our evolving understanding of the universe and everything in it, including the cutting edge research and discoveries that are shaping our knowledge.Lee Smolin reveals how math and cosmology are helping us create a theory of the whole universe Brian Cox offers new dimensions on the Large Hadron and the existence of a Higgs-Boson particle Neil Turok analyzes the fundamental laws of nature, what came before the big bang, and the possibility of a unified theory.Seth Lloyd investigates the impact of computational revolutions and the informational revolution Lawrence Krauss provides fresh insight into gravity, dark matter, and the energy of empty space Brian Greene and Walter Isaacson illuminate the genius who revolutionized modern science: Albert Einstein and much more.Explore the Universe with some of today’s greatest minds: what it is, how it came into being, and what may happen next.

Black Hole Blues and Other Songs from Outer Space


Janna Levin - 2016
    A strong gravitational wave will briefly change that distance by less than the thickness of a human hair. We have perhaps less than a few tenths of a second to perform this measurement. And we don’t know if this infinitesimal event will come next month, next year or perhaps in thirty years.In 1916 Einstein predicted the existence of gravitational waves: miniscule ripples in the very fabric of spacetime generated by unfathomably powerful events. If such vibrations could somehow be recorded, we could observe our universe for the first time through sound: the hissing of the Big Bang, the whale-like tunes of collapsing stars, the low tones of merging galaxies, the drumbeat of two black holes collapsing into one. For decades, astrophysicists have searched for a way of doing so…In 2016 a team of hundreds of scientists at work on a billion-dollar experiment made history when they announced the first ever detection of a gravitational wave, confirming Einstein’s prediction. This is their story, and the story of the most sensitive scientific instrument ever made: LIGO.Based on complete access to LIGO and the scientists who created it, Black Hole Blues provides a firsthand account of this astonishing achievement: a compelling, intimate portrait of cutting-edge science at its most awe-inspiring and ambitious.

To Explain the World: The Discovery of Modern Science


Steven Weinberg - 2015
    He shows that the scientists of ancient and medieval times not only did not understand what we understand about the world—they did not understand what there is to understand, or how to understand it. Yet over the centuries, through the struggle to solve such mysteries as the curious backward movement of the planets and the rise and fall of the tides, the modern discipline of science eventually emerged. Along the way, Weinberg examines historic clashes and collaborations between science and the competing spheres of religion, technology, poetry, mathematics, and philosophy.An illuminating exploration of the way we consider and analyze the world around us, To Explain the World is a sweeping, ambitious account of how difficult it was to discover the goals and methods of modern science, and the impact of this discovery on human knowledge and development.

Convergence: The Idea at the Heart of Science


Peter Watson - 2016
    Various scientific disciplines, despite their very different beginnings, have been coming together over the past 150 years, converging and coalescing. Intimate connections have been discovered between physics and chemistry, psychology and biology, genetics and linguistics. In this groundbreaking book, Peter Watson identifies one extraordinary master narrative, capturing how the sciences are slowly resolving into one overwhelming, interlocking story about the universe. Watson begins his narrative in the 1850s, the decade when, he argues, the convergence of the sciences began. The idea of the conservation of energy was introduced in this decade, as was Darwin’s theory of evolution—both of which rocketed the sciences forward and revealed unimagined interconnections and overlaps between disciplines. The story then proceeds from each major breakthrough and major scientist to the next, leaping between fields and linking them together. Decade after decade, the story captures every major scientific advance en route to the present, proceeding like a cosmic detective story, or the world’s most massive code-breaking effort. Watson’s is a thrilling new approach to the history of science, revealing how each piece falls into place, and how each uncovers an “emerging order.” Convergence is, as Nobel Prize-winning physicist Steven Weinberg has put it, “The deepest thing about the universe.” And Watson’s comprehensive and eye-opening book argues that all our scientific efforts are indeed approaching unity. Told through the eyes of the scientists themselves, charting each discovery and breakthrough, it is a gripping way to learn what we now know about the universe and where our inquiries are heading.

Why Beauty Is Truth: A History of Symmetry


Ian Stewart - 2007
    In Why Beauty Is Truth, world-famous mathematician Ian Stewart narrates the history of the emergence of this remarkable area of study. Stewart introduces us to such characters as the Renaissance Italian genius, rogue, scholar, and gambler Girolamo Cardano, who stole the modern method of solving cubic equations and published it in the first important book on algebra, and the young revolutionary Evariste Galois, who refashioned the whole of mathematics and founded the field of group theory only to die in a pointless duel over a woman before his work was published. Stewart also explores the strange numerology of real mathematics, in which particular numbers have unique and unpredictable properties related to symmetry. He shows how Wilhelm Killing discovered “Lie groups” with 14, 52, 78, 133, and 248 dimensions-groups whose very existence is a profound puzzle. Finally, Stewart describes the world beyond superstrings: the “octonionic” symmetries that may explain the very existence of the universe.

The Last Man Who Knew Everything: The Life and Times of Enrico Fermi, Father of the Nuclear Age


David N. Schwartz - 2017
    At the forefront of this breakthrough stood Enrico Fermi. Straddling the ages of classical physics and quantum mechanics, equally at ease with theory and experiment, Fermi truly was the last man who knew everything-at least about physics. But he was also a complex figure who was a part of both the Italian Fascist Party and the Manhattan Project, and a less-than-ideal father and husband who nevertheless remained one of history's greatest mentors. Based on new archival material and exclusive interviews, The Last Man Who Knew Everything lays bare the enigmatic life of a colossus of twentieth century physics.

Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension


Michio Kaku - 1994
    Indeed, many physicists today believe that there are other dimensions beyond the four of our space-time, and that a unified vision of the various forces of nature can be achieved, if we consider that everything we see around us, from the trees to the stars are nothing but vibrations in hyperspace. Hyperspace theory - and its more recent derivation, superstring theory - is the eye of this revolution. In this book, Michio Kaku shows us a fascinating panorama, which completely changes our view of the cosmos, and takes us on a dazzling journey through new dimensions: wormholes connecting parallel universes, time machines, "baby universes" and more. Similar wonders are emerging in some pages in which everything is explained with elegant simplicity and where the mathematical formulation is replaced by imaginative illustrations that allow the problems to be visualized. The result is a very entertaining and surprising book, which even leaves behind the greatest fantasies of the old science fiction authors.

Reinventing Gravity: A Physicist Goes Beyond Einstein


John W. Moffat - 2008
    But what if, nonetheless, Einstein got it wrong?Since the 1930s, physicists have noticed an alarming discrepancy between the universe as we see it and the universe that Einstein's theory of relativity predicts. There just doesn't seem to be enough stuff out there for everything to hang together. Galaxies spin so fast that, based on the amount of visible matter in them, they ought to be flung to pieces, the same way a spinning yo-yo can break its string. Cosmologists tried to solve the problem by positing dark matter—a mysterious, invisible substance that surrounds galaxies, holding the visible matter in place—and particle physicists, attempting to identify the nature of the stuff, have undertaken a slew of experiments to detect it. So far, none have.Now, John W. Moffat, a physicist at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, offers a different solution to the problem. The cap­stone to a storybook career—one that began with a correspondence with Einstein and a conversation with Niels Bohr—Moffat's modified gravity theory, or MOG, can model the movements of the universe without recourse to dark matter, and his work chal­lenging the constancy of the speed of light raises a stark challenge to the usual models of the first half-million years of the universe's existence.This bold new work, presenting the entirety of Moffat's hypothesis to a general readership for the first time, promises to overturn everything we thought we knew about the origins and evolution of the universe.