Book picks similar to
Basic Engineering Mathematics by John O. Bird
math
engineering
mathematics
maths
Elementary Number Theory
David M. Burton - 1976
It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.
A Strange Wilderness: The Lives of the Great Mathematicians
Amir D. Aczel - 2011
As exciting as any action/adventure novel, this is actually the story of incredible individuals and engrossing tales behind the most profound, enduring mathematical theorems.Archimedes famously ran naked through the streets shouting, “Eureka, eureka!” after finding a method for measuring the volume of an irregular-shaped object. René Descartes was not only a great French mathematician, philosopher, physicist, and natural scientist; he was also an expert swordsman who traveled with European armies from town to town, dressed in green taffeta and accompanied by a valet. Georg Cantor grappled with mental illness as he explored the highly counterintuitive, bizarre properties of infinite sets and numbers. Emmy Noether struggled to find employment as she laid the mathematical groundwork for modern theoretical physics. And Alexander Grothendieck taught himself mathematics while interned in Nazi concentration camps, only to disappear into the Pyrenees at the zenith of his career.These are just a few stories recounted in this absorbing narrative. In probing the lives of the preeminent mathematicians in history, a Strange Wilderness will leave you entertained and enlightened, with a newfound appreciation of the tenacity, complexity, and brilliance of the mathematical genius.
Encyclopedia of Electronic Components Volume 1: Resistors, Capacitors, Inductors, Switches, Encoders, Relays, Transistors
Charles Platt - 2012
You’ll learn what each one does, how it works, why it’s useful, and what variants exist. No matter how much you know about electronics, you’ll find fascinating details you’ve never come across before.Convenient, concise, well-organized, and precisePerfect for teachers, hobbyists, engineers, and students of all ages, this reference puts reliable, fact-checked information right at your fingertips—whether you’re refreshing your memory or exploring a component for the first time. Beginners will quickly grasp important concepts, and more experienced users will find the specific details their projects require.Unique: the first and only encyclopedia set on electronic components, distilled into three separate volumesIncredibly detailed: includes information distilled from hundreds of sourcesEasy to browse: parts are clearly organized by component typeAuthoritative: fact-checked by expert advisors to ensure that the information is both current and accurateReliable: a more consistent source of information than online sources, product datasheets, and manufacturer’s tutorialsInstructive: each component description provides details about substitutions, common problems, and workaroundsComprehensive: Volume 1 covers power, electromagnetism, and discrete semi-conductors; Volume 2 includes integrated circuits, and light and sound sources; Volume 3 covers a range of sensing devices.
Concrete Mathematics: A Foundation for Computer Science
Ronald L. Graham - 1988
"More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."
Thinking In Numbers: On Life, Love, Meaning, and Math
Daniel Tammet - 2012
In Tammet's world, numbers are beautiful and mathematics illuminates our lives and minds. Using anecdotes, everyday examples, and ruminations on history, literature, and more, Tammet allows us to share his unique insights and delight in the way numbers, fractions, and equations underpin all our lives. Inspired by the complexity of snowflakes, Anne Boleyn's eleven fingers, or his many siblings, Tammet explores questions such as why time seems to speed up as we age, whether there is such a thing as an average person, and how we can make sense of those we love. Thinking In Numbers will change the way you think about math and fire your imagination to see the world with fresh eyes.
Why Does E=mc²? (And Why Should We Care?)
Brian Cox - 2009
Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.
Foundations of Complex Analysis
S. Ponnusamy - 2002
Suitable for a two semester course in complex analysis, or as a supplementary text for an advanced course in function theory, this book aims to give students a good foundation of complex analysis and provides a basis for solving problems in mathematics, physics, engineering and many other sciences.
The Art and Craft of Problem Solving
Paul Zeitz - 1999
Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.
A Book of Abstract Algebra
Charles C. Pinter - 1982
Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.
Electronic Devices (Conventional Current Version)
Thomas L. Floyd - 1984
Floyd is well known for straightforward, understandable explanations of complex concepts, as well as for non-technical, on-target treatment of mathematics. The extensive use of examples, Multisim simulations, and graphical illustrations makes even complex concepts understandable. From discrete components, to linear integrated circuits, to programmable analog devices, this books¿ coverage is well balanced between discrete and integrated circuits. Also includes focus on power amplifiers; BJT and FET amplifiers; advanced integrated circuits–instrumentation and isolation amplifiers; OTAs; log/antilog amplifiers; and converters. Thorough coverage of optical topics–high intensity LEDs and fiber optics. Devices sections on differential amplifiers and the IGBT (insulated gate bipolar transistor) are now included. For electronics technicians.
Calculus: The Classic Edition
Earl W. Swokowski - 1991
Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.
Calculus Made Easy
Silvanus Phillips Thompson - 1910
With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.
Impossibility: The Limits of Science and the Science of Limits
John D. Barrow - 1998
Astronomer John Barrow takes an intriguing look at the limits of science, who argues that there are things that are ultimately unknowable, undoable, or unreachable.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data