A Mind at Play: How Claude Shannon Invented the Information Age


Jimmy Soni - 2017
    He constructed a fleet of customized unicycles and a flamethrowing trumpet, outfoxed Vegas casinos, and built juggling robots. He also wrote the seminal text of the digital revolution, which has been called “the Magna Carta of the Information Age.” His discoveries would lead contemporaries to compare him to Albert Einstein and Isaac Newton. His work anticipated by decades the world we’d be living in today—and gave mathematicians and engineers the tools to bring that world to pass.In this elegantly written, exhaustively researched biography, Jimmy Soni and Rob Goodman reveal Claude Shannon’s full story for the first time. It’s the story of a small-town Michigan boy whose career stretched from the era of room-sized computers powered by gears and string to the age of Apple. It’s the story of the origins of our digital world in the tunnels of MIT and the “idea factory” of Bell Labs, in the “scientists’ war” with Nazi Germany, and in the work of Shannon’s collaborators and rivals, thinkers like Alan Turing, John von Neumann, Vannevar Bush, and Norbert Wiener.And it’s the story of Shannon’s life as an often reclusive, always playful genius. With access to Shannon’s family and friends, A Mind at Play brings this singular innovator and creative genius to life.

When Things Start to Think


Neil Gershenfeld - 1999
    Gershenfeld offers a glimpse at the brave new post-computerized world, where microchips work for us instead of against us. He argues that we waste the potential of the microchip when we confine it to a box on our desk: the real electronic revolution will come when computers have all but disappeared into the walls around us. Imagine a digital book that looks like a traditional book printed on paper and is pleasant to read in bed but has all the mutability of a screen display. How about a personal fabricator that can organize digitized atoms into anything you want, or a musical keyboard that can be woven into a denim jacket? Gershenfeld tells the story of his Things that Think group at MIT's Media Lab, the group of innovative scientists and researchers dedicated to integrating digital technology into the fabric of our lives.

Paradigms of Artificial Intelligence Programming: Case Studies in Common LISP


Peter Norvig - 1991
    By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts. The author strongly emphasizes the practical performance issues involved in writing real working programs of significant size. Chapters on troubleshooting and efficiency are included, along with a discussion of the fundamentals of object-oriented programming and a description of the main CLOS functions. This volume is an excellent text for a course on AI programming, a useful supplement for general AI courses and an indispensable reference for the professional programmer.

Machine Learning


Ethem Alpaydin - 2016
    It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpayd�n offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias. Alpayd�n, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.

Life After Google: The Fall of Big Data and the Rise of the Blockchain Economy


George Gilder - 2018
    Gilder says or writes is ever delivered at anything less than the fullest philosophical decibel... Mr. Gilder sounds less like a tech guru than a poet, and his words tumble out in a romantic cascade." “Google’s algorithms assume the world’s future is nothing more than the next moment in a random process. George Gilder shows how deep this assumption goes, what motivates people to make it, and why it’s wrong: the future depends on human action.” — Peter Thiel, founder of PayPal and Palantir Technologies and author of Zero to One: Notes on Startups, or How to Build the Future The Age of Google, built on big data and machine intelligence, has been an awesome era. But it’s coming to an end. In Life after Google, George Gilder—the peerless visionary of technology and culture—explains why Silicon Valley is suffering a nervous breakdown and what to expect as the post-Google age dawns. Google’s astonishing ability to “search and sort” attracts the entire world to its search engine and countless other goodies—videos, maps, email, calendars….And everything it offers is free, or so it seems. Instead of paying directly, users submit to advertising. The system of “aggregate and advertise” works—for a while—if you control an empire of data centers, but a market without prices strangles entrepreneurship and turns the Internet into a wasteland of ads. The crisis is not just economic. Even as advances in artificial intelligence induce delusions of omnipotence and transcendence, Silicon Valley has pretty much given up on security. The Internet firewalls supposedly protecting all those passwords and personal information have proved hopelessly permeable. The crisis cannot be solved within the current computer and network architecture. The future lies with the “cryptocosm”—the new architecture of the blockchain and its derivatives. Enabling cryptocurrencies such as bitcoin and ether, NEO and Hashgraph, it will provide the Internet a secure global payments system, ending the aggregate-and-advertise Age of Google. Silicon Valley, long dominated by a few giants, faces a “great unbundling,” which will disperse computer power and commerce and transform the economy and the Internet. Life after Google is almost here.   For fans of "Wealth and Poverty," "Knowledge and Power," and "The Scandal of Money."

Data Science with R


Garrett Grolemund - 2015
    

Automate This: How Algorithms Came to Rule Our World


Christopher Steiner - 2012
    It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What hap­pens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others?  Who knows—maybe there’s a bot learning to do your job this minute.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

Machine Learning: An Algorithmic Perspective


Stephen Marsland - 2009
    The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."

Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World


Leslie Valiant - 2013
    We nevertheless muddle through even in the absence of theories of how to act. But how do we do it?In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is “probably approximately correct” algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant’s theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence.Offering a powerful and elegant model that encompasses life’s complexity, Probably Approximately Correct has profound implications for how we think about behavior, cognition, biological evolution, and the possibilities and limits of human and machine intelligence.

Complexity: A Guided Tour


Melanie Mitchell - 2009
    Based on her work at the Santa Fe Institute and drawing on its interdisciplinary strategies, Mitchell brings clarity to the workings of complexity across a broad range of biological, technological, and social phenomena, seeking out the general principles or laws that apply to all of them. Richly illustrated, Complexity: A Guided Tour--winner of the 2010 Phi Beta Kappa Book Award in Science--offers a wide-ranging overview of the ideas underlying complex systems science, the current research at the forefront of this field, and the prospects for its contribution to solving some of the most important scientific questions of our time.

The Technological Singularity


Murray Shanahan - 2015
    Some singularity theorists predict that if the field of artificial intelligence (AI) continues to develop at its current dizzying rate, the singularity could come about in the middle of the present century. Murray Shanahan offers an introduction to the idea of the singularity and considers the ramifications of such a potentially seismic event. Shanahan's aim is not to make predictions but rather to investigate a range of scenarios. Whether we believe that singularity is near or far, likely or impossible, apocalypse or utopia, the very idea raises crucial philosophical and pragmatic questions, forcing us to think seriously about what we want as a species. Shanahan describes technological advances in AI, both biologically inspired and engineered from scratch. Once human-level AI -- theoretically possible, but difficult to accomplish -- has been achieved, he explains, the transition to superintelligent AI could be very rapid. Shanahan considers what the existence of superintelligent machines could mean for such matters as personhood, responsibility, rights, and identity. Some superhuman AI agents might be created to benefit humankind; some might go rogue. (Is Siri the template, or HAL?) The singularity presents both an existential threat to humanity and an existential opportunity for humanity to transcend its limitations. Shanahan makes it clear that we need to imagine both possibilities if we want to bring about the better outcome.

Futureproof: 9 Rules for Humans in the Age of Automation


Kevin Roose - 2021
    After decades of sci-fi fantasies and hype, artificial intelligence has leapt out of research labs and Silicon Valley engineering departments and into the center of our lives. Algorithms shape everything around us, from the news we see to the products we buy and the relationships we form. And while the debate over whether or not automation will destroy jobs rages on, a much more important question is being ignored:What does it mean to be a human in a world that is increasingly built by and for machines?In Futureproof: 9 Rules for Humans in the Age of Automation, New York Times technology columnist Kevin Roose lays out a hopeful, pragmatic vision of how people can succeed in the machine age by making themselves irreplaceably human. He shares the secrets of people and organizations that have survived technological change, and explains how we can protect our own futures, with lessons like- Do work that is surprising, social, and scarce (the types of work machines can't do). - Demote your phone. - Work near other people. - Treat A.I. like an army of chimpanzees. - Add more friction to your life.Roose rejects the conventional wisdom that in order to compete with machines, we have to become more like them--hyper-efficient, data-driven, code-writing workhorses. Instead, he says, we should let machines be machines, and focus on doing the kinds of creative, inspiring, and meaningful things only humans can do.

Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World


Don Tapscott - 2016
    But it is much more than that, too. It is a public ledger to which everyone has access, but which no single person controls. It allows for companies and individuals to collaborate with an unprecedented degree of trust and transparency. It is cryptographically secure, but fundamentally open. And soon it will be everywhere.In Blockchain Revolution, Don and Alex Tapscott reveal how this game-changing technology will shape the future of the world economy, dramatically improving everything from healthcare records to online voting, and from insurance claims to artist royalty payments. Brilliantly researched and highly accessible, this is the essential text on the next major paradigm shift. Read it, or be left behind.

Advanced Scala with Cats


Noel Welsh - 2017
    This means designing systems as small composable units, expressing constraints and interactions via the type system, and using composition to guide the construction of large systems in a way that maintains the original architectural vision.The book also serves as an introduction to the Cats library. We use abstractions from Cats, and we explain the structure of Cats so you can use it without fear in your own code base. The broad ideas are not specific to Cats, but Cats provides an excellent implementation that is beneficial to learn in its own right.