Infinite in All Directions


Freeman Dyson - 1988
    In Dyson's view, science and religion are two windows through which we can look out at the world around us. The book is a revised version of a series of the Gifford Lectures under the title "In Praise of Diversity" given at Aberdeen, Scotland. They allowed Dyson the license to express everything in the universe, which he divided into two parts in polished prose: focusing on the diversity of the natural world as the first, and the diversity of human reactions as the second half.Chapter 1 is a brief explanation of Dyson's attitudes toward religion and science. Chapter 2 is a one–hour tour of the universe that emphasizes the diversity of viewpoints from which the universe can be encountered as well as the diversity of objects which it contains. Chapter 3 is concerned with the history of science and describes two contrasting styles in science: one welcoming diversity and the other deploring it. He uses the cities of Manchester and Athens as symbols of these two ways of approaching science. Chapter 4, concerned with the origin of life, describes the ideas of six illustrious scientists who have struggled to understand the nature of life from various points of view. Chapter 5 continues the discussion of the nature and evolution of life. The question of why life characteristically tends toward extremes of diversity remains central in all attempts to understand life's place in the universe. Chapter 6 is an exercise in eschatology, trying to define possible futures for life and for the universe, from here to infinity. In this chapter, Dyson crosses the border between science and science fiction and he frames his speculations in a slightly theological context.

Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension


Michio Kaku - 1994
    Indeed, many physicists today believe that there are other dimensions beyond the four of our space-time, and that a unified vision of the various forces of nature can be achieved, if we consider that everything we see around us, from the trees to the stars are nothing but vibrations in hyperspace. Hyperspace theory - and its more recent derivation, superstring theory - is the eye of this revolution. In this book, Michio Kaku shows us a fascinating panorama, which completely changes our view of the cosmos, and takes us on a dazzling journey through new dimensions: wormholes connecting parallel universes, time machines, "baby universes" and more. Similar wonders are emerging in some pages in which everything is explained with elegant simplicity and where the mathematical formulation is replaced by imaginative illustrations that allow the problems to be visualized. The result is a very entertaining and surprising book, which even leaves behind the greatest fantasies of the old science fiction authors.

Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think


David Lindley - 1996
    Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.

Decoding Reality: The Universe as Quantum Information


Vlatko Vedral - 2010
    The Universe and its workings are the ebb and flow of information. We are all transient patterns of information, passing on the recipe for our basic forms to future generations using a four-letter digital code called DNA.In this engaging and mind-stretching account, Vlatko Vedral considers some of the deepest questions about the Universe and considers the implications of interpreting it in terms of information. He explains the nature of information, the idea of entropy, and the roots of this thinking in thermodynamics. He describes the bizarre effects of quantum behaviour - effects such as 'entanglement', which Einstein called 'spooky action at a distance' and explores cutting edge work on the harnessing quantum effects in hyperfast quantum computers, and how recent evidence suggests that the weirdness of the quantum world, once thought limited to the tiniest scales, may reach into the macro world.Vedral finishes by considering the answer to the ultimate question: where did all of the information in the Universe come from? The answers he considers are exhilarating, drawing upon the work of distinguished physicist John Wheeler. The ideas challenge our concept of the nature of particles, of time, of determinism, and of reality itself.

Time Reborn: From the Crisis in Physics to the Future of the Universe


Lee Smolin - 2013
    You experience it passing every day when you watch clocks tick, bread toast, and children grow. But most physicists see things differently, from Newton to Einstein to today’s quantum theorists. For them, time isn’t real. You may think you experience time passing, but they say it’s just an illusion.Lee Smolin, author of the controversial bestseller The Trouble with Physics, argues this limited notion of time is holding physics back. It’s time for a major revolution in scientific thought. The reality of time could be the key to the next big breakthrough in theoretical physics.What if the laws of physics themselves were not timeless? What if they could evolve? Time Reborn offers a radical new approach to cosmology that embraces the reality of time and opens up a whole new universe of possibilties. There are few ideas that, like our notion of time, shape our thinking about literally everything, with major implications for physics and beyond—from climate change to the economic crisis. Smolin explains in lively and lucid prose how the true nature of time impacts our world.

Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime


Sean Carroll - 2019
    Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of 20th century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many Worlds Theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Atom: Journey Across the Subatomic Cosmos


Isaac Asimov - 1991
    If you've been searching for a basic text on how the atom works, this is it." --Booklist "A masterpiece."--OmniThe legendary Isaac Asimov starts what is perhaps the most fascinating of all his books with a simple query: how finely can a piece of matter be divided? But like many simple questions, this one leads us on a far-flung quest for a final answer, a search that becomes a series of beautifully structured building blocks of knowledge.It begins with the earliest speculations and investigations by the Greeks and Romans, and then, step by step and century by century, it traces the path of discovery that revealed more and more of the nature of the atom, of light, of gravity, of the electromagnetic force--and even the nature and structure of the universe.Atom also encompasses such phenomena as light and electricity; the protons, neutrons and quarks that are the fundamental units of the universe; hard-to-observe "anti-particles"; and other strange bits of matter that challenge our assumptions about the very nature of space and time.Atom is the only book of its kind, by the renowned author whose genius for bringing clarity and excitement to complex subjects has made him the most celebrated science author of our time.

What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics


Adam Becker - 2018
    But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.

Neutrino


Frank Close - 2010
    These tiny, ghostly particles are formed by the billions in stars and pass through us constantly, unseen, at almost the speed of light. Yet half a century after their discovery, we still know less about them than all the other varieties of matter that have ever been seen. In this engaging, concise volume, renowned scientist and popular writer Frank Close gives a vivid account of the discovery of neutrinos and our growing understanding of their significance, also touching on some speculative ideas concerning the possible uses of neutrinos and their role in the early universe. Close begins with the early history of the discovery of radioactivity by Henri Becquerel and Marie and Pierre Curie, the early model of the atom by Ernest Rutherford, and problems with these early atomic models, and Wolfgang Pauli's solution to that problem by inventing the concept of neutrino (named by Enrico Fermi, neutrino being Italian for little neutron). The book describes how the confirmation of Pauli's theory didn't occur until 1956, when Clyde Cowan and Fred Reines detected neutrinos, and reveals that the first natural neutrinos were finally detected by Reines in 1965 (before that, they had only been detected in reactors or accelerators). Close takes us to research experiments miles underground that are able to track neutrinos' fleeting impact as they pass through vast pools of cadmium chloride and he explains why they are becoming of such interest to cosmologists--if we can track where a neutrino originated we will be looking into the far distant reaches of the universe. In telling the story of the neutrino, Close offers a fascinating portrait of a strand of modern physics that sheds light on everything from the workings of the atom and the power of the sun.

Quantum: A Guide for the Perplexed


Jim Al-Khalili - 2003
    Marvel at the Dual Slit experiment as a tiny atom passes through 2 separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

The Fabric of Reality: The Science of Parallel Universes--and Its Implications


David Deutsch - 1996
    Taken literally, it implies that there are many universes “parallel” to the one we see around us. This multiplicity of universes, according to Deutsch, turns out to be the key to achieving a new worldview, one which synthesizes the theories of evolution, computation, and knowledge with quantum physics. Considered jointly, these four strands of explanation reveal a unified fabric of reality that is both objective and comprehensible, the subject of this daring, challenging book. The Fabric of Reality explains and connects many topics at the leading edge of current research and thinking, such as quantum computers (which work by effectively collaborating with their counterparts in other universes), the physics of time travel, the comprehensibility of nature and the physical limits of virtual reality, the significance of human life, and the ultimate fate of the universe. Here, for scientist and layperson alike, for philosopher, science-fiction reader, biologist, and computer expert, is a startlingly complete and rational synthesis of disciplines, and a new, optimistic message about existence.

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

The Mathematics of Life


Ian Stewart - 2011
    Within the past ten years, however, mathematicians have proven that they hold the key to unlocking the mysteries of our world--and ourselves. In The Mathematics of Life, Ian Stewart provides a fascinating overview of the vital but little-recognized role mathematics has played in pulling back the curtain on the hidden complexities of the natural world--and how its contribution will be even more vital in the years ahead. In his characteristically clear and entertaining fashion, Stewart explains how mathematicians and biologists have come to work together on some of the most difficult scientific problems that the human race has ever tackled, including the nature and origin of life itself.

Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature


Steven Weinberg - 1992
    Writing with dazzling elegance and clarity, he retraces the steps that have led modern scientists from relativity and quantum mechanics to the notion of superstrings and the idea that our universe may coexist with others.But Weinberg asks as many questions as he answers, among them: Why does each explanation of the way nature works point to the other, deeper explanations? Why are the best theories not only logical but beautiful? And what implications will a final theory have for our philosophy and religious faith?Intellectually daring, rich in anecdote and aphorism, Dreams of a Final Theory launches us into a new cosmos and helps us make sense of what we find there.“This splendid book is as good reading about physics and physicists as this reviewer can name…clear, honest, and brilliantly instructive.”—Philip Morrison, Scientific American