Book picks similar to
A Student's Guide to the Schrödinger Equation (Student's Guides) by Daniel A. Fleisch
physics
science
mathematics
mmath
How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind
Wallace S. Broecker - 1995
Physics for Scientists and Engineers
Paul Allen Tipler - 1981
Now in its fourth edition, the work has been extensively revised, with entirely new artwork, updated examples and new pedagogical features. An interactive CD-ROM with worked examples is included. Alternatively, the material on from the CD-ROM can be down-loaded from a website (see supplements section). Twentieth-century developments such as quantum mechanics are introduced early on, so that students can appreciate their importance and see how they fit into the bigger picture.
Elements Of Electrical And Mechanical Engineering
B.L. Theraja - 1999
Conscious Robots: Facing up to the reality of being human.
Paul Kwatz - 2005
Conscious Robots challenges us to face up to the reality of being human: just because we're conscious doesn't mean we're not robots. So what would we do with free will if we really had it? And how does “being a robot” explain why life, as Buddha suggested, is “inherently unsatisfactory”, despite our luxurious homes, successful careers and loving families? Conscious Robots shows why we’re so convinced that we’re in charge, when we’re really just carrying out our evolved pre-programmed instructions. And reveals the inevitable future, how one day humans will take control of their conscious minds, get happy and stay happy. But it will come too late for you, Dear Reader… so no point buying the book. Unless you’re extremely rich, of course. Then you can pay for the neurochemical research yourself. “Easy to understand and persuasive” “Reminded me of Douglas Adams and Terry Pratchett”
The Neanderthals: The History of the Extinct Humans Who Were Contemporaries of Homo Sapiens in Europe
Charles River Editors - 2018
This seems to have been the case even from the first recognition of the Neanderthals as a species. The first Neanderthal fossil discovery was that of a child’s skull in Belgium in 1829, but it was badly damaged. Another would be discovered in 1856 in a limestone mine of the Neanderthal region of what is present-day Germany, and a skull with differing distinct traits (indicating a different species than the Neanderthals) would be discovered just over a decade later in southwestern France. The latter specimen would come to be recognized as an example of the species Homo Sapiens, and these anatomically modern humans arrived in Europe between 45,000 and 43,000 years ago, around the time the Neanderthals are believed to started going extinct. The Neanderthals are a member of the genus Homo just like Homo sapiens and share roughly 99.7% of their DNA with modern humans (Reynolds and Gallagher 2012). Both species even lived briefly during the same time in Eurasia. However, the Neanderthals evolved separately in Europe, away from modern humans, who evolved in Africa. Physically, the Neanderthal skeleton was much more robust, suggesting that there was more room for muscle attachment. However, while Neanderthals were stronger than modern humans, the average height of the Neanderthal male was shorter, standing at only about 5’5 tall. Other physical characteristics that set the Neanderthals apart from modern humans were certain skull traits. The skull in general was low and elongated, featuring a sloping forehead with an occipital bun (a bone projection at the back of the skull), whereas modern humans have a more vertical forehead with no occipital bun. The cranial capacity of the Neanderthal skull was also greater than the modern human at 1,500–1,740 cc, and it lacked a chin and had more circular eye orbits, in contrast to Homo sapiens, which have a chin and tend to feature more rectangular eye orbits (Wolpoff 1999). Despite these differences, the Neanderthals may have been recognizable enough to interact with Homo sapiens or even blend in with Homo sapiens for the thousands of years they lived together in Europe. The Neanderthals lived in Europe and Asia for nearly 200,000 years and thrived in these regions, but they went extinct between 40,000 and 30,000 years ago, around the same time that modern humans began arriving in Europe. This has prompted much speculation as to the nature of the interactions between Neanderthals and Homo sapiens, especially since some researchers believe they interacted with each other for over 5,000 years before the Neanderthals began going extinct at different times across Europe. One hypothesis is that Homo sapiens displaced the Neanderthals and were better suited for the environment, and it is obviously possible if not likely that these two groups had become competitors for food and other resources, with Homo sapiens being more successful in the end. If such close interactions were taking place, there is also a possibility that the relatively new-to-Europe Homo sapiens brought pathogens from Africa with them that were unknown to the Neanderthal’s immune system. A more recent example of this type of resulting interaction is the European expansion into the Americas, which brought diseases like smallpox that the natives of America had never experienced before, especially diseases resulting from the domestication of animals. It is possible that the domestication of the dog by Homo sapiens may have contributed in spreading foreign diseases among the Neanderthals.
The Undivided Universe: An Ontological Interpretation of Quantum Theory
David Bohm - 1993
They develop an interpretation of quantum mechanics which gives a clear, intuitive understanding of its meaning and in which there is a coherent notion of the reality of the universe without assuming a fundamental role for the human observer. With the aid of new concepts such as active information together with non-locality, they provide a comprehensive account of all the basic features of quantum mechanics, including the relativistic domain and quantum field theory. It is shown that, with the new approach, paradoxical or unsatisfactory features associated with the standard approaches, such as the wave-particle duality and the collapse of the wave function, do not arise. Finally, the authors make new suggestions and indicate some areas in which one may expect quantum theory to break down in a way that will allow for a test. The Undivided Universe is an important book especially because it provides a different overall world view which is neither mechanistic nor reductionist. This view will ultimately have radical implications not only in physics but also in our general approach to all areas of life.
Astronomy: A Beginner's Guide to the Universe
Eric Chaisson - 1995
Astronomy: A Beginner's Guide to the Universe.
Classical Mechanics
Herbert Goldstein - 1950
KEY TOPICS: This classic book enables readers to make connections between classical and modern physics - an indispensable part of a physicist's education. In this new edition, Beams Medal winner Charles Poole and John Safko have updated the book to include the latest topics, applications, and notation, to reflect today's physics curriculum. They introduce readers to the increasingly important role that nonlinearities play in contemporary applications of classical mechanics. New numerical exercises help readers to develop skills in how to use computer techniques to solve problems in physics. Mathematical techniques are presented in detail so that the book remains fully accessible to readers who have not had an intermediate course in classical mechanics. MARKET: For college instructors and students.
Cambridge International AS Level and A Level Physics Coursebook with CD-ROM (Cambridge International Examinations)
David Sang - 2010
Cambridge International AS and A Level Physics covers all the material required for the Cambridge syllabus. The accompanying Student's CD-ROM includes many more questions linked to each chapter, including multiple choice, how to tackle the examinations, and animations, a glossary and summaries. A Teacher's Resource CD-ROM is also available and includes answers to all questions in the Coursebook, together with worksheets describing practical work linked to each chapter in the book.
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
Introduction to Classical Mechanics: With Problems and Solutions
David Morin - 2007
It also explores more advanced topics, such as normal modes, the Lagrangian method, gyroscopic motion, fictitious forces, 4-vectors, and general relativity. It contains more than 250 problems with detailed solutions so students can easily check their understanding of the topic. There are also over 350 unworked exercises which are ideal for homework assignments. Password protected solutions are available to instructors at www.cambridge.org/9780521876223. The vast number of problems alone makes it an ideal supplementary text for all levels of undergraduate physics courses in classical mechanics. Remarks are scattered throughout the text, discussing issues that are often glossed over in other textbooks, and it is thoroughly illustrated with more than 600 figures to help demonstrate key concepts.
The Little Book of Scientific Principles, Theories and Things
Surendra Verma - 2005
It features all the great names in science, including Pythagoras, Galileo, Newton, Darwin, and Einstein, as well as more recent contributors such as Rachel Carson, James Lovelock, and Stephen Hawking.This little book presents serious science simply, answering questions like:What is Pythagorean Theorem? What is the difference between circadian rhythms and the popular concept of biorhythms? What is Hawking’s Black Hole Theory? Who developed the World Wide Web?