The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science


Richard Holmes - 2008
    It has been inspired by the scientific ferment that swept through Britain at the end of the 18th century, and which Holmes now radically redefines as 'the revolution of Romantic Science'.

King Solomon's Ring


Konrad Lorenz - 1949
    Konrad Lorenz was gifted with a similar power of understanding the animal world. He was that rare beast, a brilliant scientist who could write (and indeed draw) beautifully. He did more than any other person to establish and popularize the study of how animals behave, receiving a Nobel Prize for his work. King Solomon's Ring, the book which brought him worldwide recognition, is a delightful treasury of observations and insights into the lives of all sorts of creatures, from jackdaws and water-shrews to dogs, cats and even wolves. Charmingly illustrated by Lorenz himself, this book is a wonderfully written introduction to the world of our furred and feathered friends, a world which often provides an uncanny resemblance to our own. A must for any animal-lover!

Consilience: The Unity of Knowledge


Edward O. Wilson - 1998
    In Consilience  (a word that originally meant "jumping together"), Edward O. Wilson renews the Enlightenment's search for a unified theory of knowledge in disciplines that range from physics to biology, the social sciences and the humanities.Using the natural sciences as his model, Wilson forges dramatic links between fields. He explores the chemistry of the mind and the genetic bases of culture. He postulates the biological principles underlying works of art from cave-drawings to Lolita. Presenting the latest findings in prose of wonderful clarity and oratorical eloquence, and synthesizing it into a dazzling whole, Consilience is science in the path-clearing traditions of Newton, Einstein, and Richard Feynman.

Faust in Copenhagen: A Struggle for the Soul of Physics


Gino Segrè - 2007
    However, while physicists celebrated these momentous discoveries—which presaged the era of big science and nuclear bombs—Europe was moving inexorably toward totalitarianism and war. In April of that year, about forty of the world’s leading physicists—including Werner Heisenberg, Lise Meitner, and Paul Dirac—came to Niels Bohr’s Copenhagen Institute for their annual informal meeting about the frontiers of physics. Physicist Gino Segrè brings to life this historic gathering, which ended with a humorous skit based on Goethe’s Faust—a skit that eerily foreshadowed events that would soon unfold. Little did the scientists know the Faustian bargains they would face in the near future. Capturing the interplay between the great scientists as well as the discoveries they discussed and debated, Segrè evokes the moment when physics—and the world—was about to lose its innocence.

Fads and Fallacies in the Name of Science


Martin Gardner - 1952
    Not just a collection of anecdotes but a fair, reasoned appraisal of eccentric theory, it is unique in recognizing the scientific, philosophic, and sociological-psychological implications of the wave of pseudoscientific theories which periodically besets the world.To this second revised edition of a work formerly titled In the Name of Science, Martin Gardner has added new, up-to-date material to an already impressive account of hundreds of systematized vagaries. Here you will find discussions of hollow-earth fanatics like Symmes; Velikovsky and wandering planets; Hörbiger, Bellamy, and the theory of multiple moons; Charles Fort and the Fortean Society; dowsing and the other strange methods for finding water, ores, and oil. Also covered are such topics as naturopathy, iridiagnosis, zone therapy, food fads; Wilhelm Reich and orgone sex energy; L. Ron Hubbard and Dianetics; A. Korzybski and General Semantics. A new examination of Bridey Murphy is included in this edition, along with a new section on bibliographic reference material.

Philosophical Dictionary


Voltaire - 1764
    The subjects treated include Abraham, Angel and Anthropophages; Baptism, Beauty and Beasts; Fables, Fraud and Fanaticism; Metempsychosis, Miracles and Moses; all of them exposed to Voltaire's lucid scrutiny, his elegant irony and his passionate love of reason and justice.

The Beginning of Infinity: Explanations That Transform the World


David Deutsch - 2011
    Taking us on a journey through every fundamental field of science, as well as the history of civilization, art, moral values, and the theory of political institutions, Deutsch tracks how we form new explanations and drop bad ones, explaining the conditions under which progress—which he argues is potentially boundless—can and cannot happen. Hugely ambitious and highly original, The Beginning of Infinity explores and establishes deep connections between the laws of nature, the human condition, knowledge, and the possibility for progress.

What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics


Adam Becker - 2018
    But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.

The Edge of Physics: A Journey to Earth's Extremes to Unlock the Secrets of the Universe


Anil Ananthaswamy - 2010
    Why is the universe expanding at an ever faster rate? What is the nature of the "dark matter" that makes up almost a quarter of the universe? Why does the universe appear fine-tuned for life? Are there others besides our own? Ananthaswamy soon finds himself at the ends of the earth--in remote and sometimes dangerous places. Take the Atacama Desert in the Chilean Andes, one of the coldest, driest places on the planet, where not even a blade of grass can survive. Its spectacularly clear skies and dry atmosphere allow astronomers to gather brilliant images of galaxies billions of light-years away. Ananthaswamy takes us inside the European Southern Observatory's Very Large Telescope on Mount Paranal, where four massive domes open to the sky each night "like dragons waking up."He also takes us deep inside an abandoned iron mine in Minnesota, where half-mile-thick rock shields physicists as they hunt for elusive dark matter particles. And to the East Antarctic Ice Sheet, where engineers are drilling 1.5 miles into the clearest ice on the planet. They're building the world's largest neutrino detector, which could finally help reconcile quantum physics with Einstein's theory of general relativity.The stories of the people who work at these and other dramatic research sites--from Lake Baikal in Siberia to the Indian Astronomical Observatory in the Himalayas to the subterranean lair of the Large Hadron Collider--make for a compelling new portrait of the universe and our quest to understand it. An atmospheric, engaging, and illuminating read, "The Edge of Physics" depicts science as a human process, bringing cosmology back down to earth in the most vivid terms.

Albert Einstein: And the Frontiers of Physics


Jeremy Bernstein - 1995
    They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called wonder about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

The Lives of a Cell: Notes of a Biology Watcher


Lewis Thomas - 1978
    

On Growth and Form


D'Arcy Wentworth Thompson - 1917
    Why do living things and physical phenomena take the forms they do? Analyzing the mathematical and physical aspects of biological processes, this historic work, first published in 1917, has become renowned as well for the poetry of is descriptions.

Great Feuds in Science: Ten of the Liveliest Disputes Ever


Hal Hellman - 1999
    Bringing the cataclysmic clash of ideas and personalities to colorful life, Hellman explores both the science and the spirit of the times. Along the way, he reveals that scientific feuds are fueled not only by the purest of intellectual disagreements, but also by intransigence, ambition, jealousy, politics, faith, and the irresistible human urge to be right.Unusual insight into the development of science . . . I was excited by this book and enthusiastically recommend it to general as well as scientific audiences. -American ScientistHellman has assembled a series of entertaining tales. . . . many fine examples of heady invective without parallel in our time. -NatureAn entertaining and informative account of the unusual personalities and sometimes bitter rivalries of some of the world's greatest scientific minds. -Publishers WeeklyA fascinating new book which details some of the most famous disputes of the ages.-Courier MailDry science history turns into entertaining reading without sacrificing historical accuracy. -The Christchurch PressGreat Feuds in Science is wonderful history, as the reader learns how scientists had to fight with religious leaders and other scientists to get their work recognized, accepted, and even get the credit for it! -Bookviews

Science and Hypothesis


Henri Poincaré - 1902
    Explaining how such basic concepts as number and magnitude, space and force were developed, the great French mathematician refutes the skeptical position that modern scientific method and its results are wholly factitious. The places of rigorous logic and intuitive leaps are both established by an analysis of contrasting methods of idea-creation in individuals and in modern scientific traditions. The nature of hypothesis and the role of probability are investigated with all of Poincaré's usual fertility of insight.Partial contents: On the nature of mathematical reasoning. Magnitude and experiment. Space: non-Euclidean geometrics, space and geometry, experiment and geometry. Force: classical mechanics, relative and absolute motion, energy and thermodynamics. Nature: hypotheses in physics, the theories of modern physics, the calculus of probabilities, optics and electricity, electro-dynamics."Poincaré's was the last man to take practically all mathematics, both pure and applied as his province. Few mathematicians have had the breadth of philosophic vision that Poincaré's had, and none is his superior in the gift of clear exposition." — Men of Mathematics, Eric Temple Bell, Professor of Mathematics, University of Cambridge

The Quantum Labyrinth: How Richard Feynman and John Wheeler Revolutionized Time and Reality


Paul Halpern - 2017
    A lifelong friendship and enormously productive collaboration was born, despite sharp differences in personality. The soft-spoken Wheeler, though conservative in appearance, was a raging nonconformist full of wild ideas about the universe. The boisterous Feynman was a cautious physicist who believed only what could be tested. Yet they were complementary spirits. Their collaboration led to a complete rethinking of the nature of time and reality. It enabled Feynman to show how quantum reality is a combination of alternative, contradictory possibilities, and inspired Wheeler to develop his landmark concept of wormholes, portals to the future and past. Together, Feynman and Wheeler made sure that quantum physics would never be the same again.