Book picks similar to
Naive Set Theory by Paul R. Halmos
mathematics
math
textbooks
non-fiction
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Elementary Analysis: The Theory of Calculus
Kenneth A. Ross - 1980
It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.
Men of Mathematics
Eric Temple Bell - 1937
Bell, a leading figure in mathematics in America for half a century. Men of Mathematics accessibly explains the major mathematics, from the geometry of the Greeks through Newton's calculus and on to the laws of probability, symbolic logic, and the fourth dimension. In addition, the book goes beyond pure mathematics to present a series of engrossing biographies of the great mathematicians -- an extraordinary number of whom lived bizarre or unusual lives. Finally, Men of Mathematics is also a history of ideas, tracing the majestic development of mathematical thought from ancient times to the twentieth century. This enduring work's clear, often humorous way of dealing with complex ideas makes it an ideal book for the non-mathematician.
Probability Theory: The Logic of Science
E.T. Jaynes - 1999
It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.
The Algorithm Design Manual
Steven S. Skiena - 1997
Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide. THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains: * a complete hypertext version of the full printed book. * the source code and URLs for all cited implementations. * over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.
Introductory Functional Analysis with Applications
Erwin Kreyszig - 1978
With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists.Currently available in the Series: Emil ArtinGeometnc Algebra R. W. CarterSimple Groups Of Lie Type Richard CourantDifferential and Integrai Calculus. Volume I Richard CourantDifferential and Integral Calculus. Volume II Richard Courant & D. HilbertMethods of Mathematical Physics, Volume I Richard Courant & D. HilbertMethods of Mathematical Physics. Volume II Harold M. S. CoxeterIntroduction to Modern Geometry. Second Edition Charles W. Curtis, Irving ReinerRepresentation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartzunear Operators. Part One. General Theory Nelson Dunford. Jacob T. SchwartzLinear Operators, Part Two. Spectral Theory--Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. SchwartzLinear Operators. Part Three. Spectral Operators Peter HenriciApplied and Computational Complex Analysis. Volume I--Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang WuA Course in Modern Algebra Harry HochstadtIntegral Equations Erwin KreyszigIntroductory Functional Analysis with Applications P. M. PrenterSplines and Variational Methods C. L. SiegelTopics in Complex Function Theory. Volume I --Elliptic Functions and Uniformizatton Theory C. L. SiegelTopics in Complex Function Theory. Volume II --Automorphic and Abelian Integrals C. L. SiegelTopics In Complex Function Theory. Volume III --Abelian Functions & Modular Functions of Several Variables J. J. StokerDifferential Geometry
Journey through Genius: The Great Theorems of Mathematics
William Dunham - 1990
Now William Dunham gives them the attention they deserve.Dunham places each theorem within its historical context and explores the very human and often turbulent life of the creator — from Archimedes, the absentminded theoretician whose absorption in his work often precluded eating or bathing, to Gerolamo Cardano, the sixteenth-century mathematician whose accomplishments flourished despite a bizarre array of misadventures, to the paranoid genius of modern times, Georg Cantor. He also provides step-by-step proofs for the theorems, each easily accessible to readers with no more than a knowledge of high school mathematics.A rare combination of the historical, biographical, and mathematical, Journey Through Genius is a fascinating introduction to a neglected field of human creativity.
The Golden Ratio: The Story of Phi, the World's Most Astonishing Number
Mario Livio - 2002
In this fascinating book, Mario Livio tells the tale of a number at the heart of that mystery: phi, or 1.6180339887...This curious mathematical relationship, widely known as "The Golden Ratio," was discovered by Euclid more than two thousand years ago because of its crucial role in the construction of the pentagram, to which magical properties had been attributed. Since then it has shown a propensity to appear in the most astonishing variety of places, from mollusk shells, sunflower florets, and rose petals to the shape of the galaxy. Psychological studies have investigated whether the Golden Ratio is the most aesthetically pleasing proportion extant, and it has been asserted that the creators of the Pyramids and the Parthenon employed it. It is believed to feature in works of art from Leonardo da Vinci's Mona Lisa to Salvador Dali's The Sacrament of the Last Supper, and poets and composers have used it in their works. It has even been found to be connected to the behavior of the stock market!The Golden Ratio is a captivating journey through art and architecture, botany and biology, physics and mathematics. It tells the human story of numerous phi-fixated individuals, including the followers of Pythagoras who believed that this proportion revealed the hand of God; astronomer Johannes Kepler, who saw phi as the greatest treasure of geometry; such Renaissance thinkers as mathematician Leonardo Fibonacci of Pisa; and such masters of the modern world as Goethe, Cezanne, Bartok, and physicist Roger Penrose. Wherever his quest for the meaning of phi takes him, Mario Livio reveals the world as a place where order, beauty, and eternal mystery will always coexist.From the Hardcover edition.
The Art of Doing Science and Engineering: Learning to Learn
Richard Hamming - 1996
By presenting actual experiences and analyzing them as they are described, the author conveys the developmental thought processes employed and shows a style of thinking that leads to successful results is something that can be learned. Along with spectacular successes, the author also conveys how failures contributed to shaping the thought processes. Provides the reader with a style of thinking that will enhance a person's ability to function as a problem-solver of complex technical issues. Consists of a collection of stories about the author's participation in significant discoveries, relating how those discoveries came about and, most importantly, provides analysis about the thought processes and reasoning that took place as the author and his associates progressed through engineering problems.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Topology
James R. Munkres - 1975
Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
An Imaginary Tale: The Story of the Square Root of Minus One
Paul J. Nahin - 1998
Addressing readers with both a general and scholarly interest in mathematics, Nahin weaves into this narrative entertaining historical facts, mathematical discussions, and the application of complex numbers and functions to important problems.
The Feynman Lectures on Physics
Richard P. Feynman - 1964
A new foreword by Kip Thorne, the current Richard Feynman Professor of Theoretical Physics at Caltech, discusses the relevance of the new edition to today's readers. This boxed set also includes Feynman's new Tips on Physics—the four previously unpublished lectures that Feynman gave to students preparing for exams at the end of his course. Thus, this 4-volume set is the complete and definitive edition of The Feynman Lectures on Physics. Packaged in a specially designed slipcase, this 4-volume set provides the ultimate legacy of Feynman's extraordinary contribution to students, teachers, researches, and lay readers around the world.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.
Causality: Models, Reasoning, and Inference
Judea Pearl - 2000
It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable. Professor of Computer Science at the UCLA, Judea Pearl is the winner of the 2008 Benjamin Franklin Award in Computers and Cognitive Science.