The Interstellar Age: Inside the Forty-Year Voyager Mission


Jim Bell - 2015
    The fantastic journey began in 1977, before the first episode of Cosmos aired. The mission was planned as a grand tour beyond the moon; beyond Mars, Jupiter, and Saturn; and maybe even into interstellar space. The fact that it actually happened makes this humanity's greatest space mission.In The Interstellar Age, award-winning planetary scientist Jim Bell reveals what drove and continues to drive the members of this extraordinary team, including Ed Stone, Voyager's chief scientist and the one-time head of NASA's Jet Propulsion Lab; Charley Kohlhase, an orbital dynamics engineer who helped to design many of the critical slingshot maneuvers around planets that enabled the Voyagers to travel so far; and the geologist whose Earth-bound experience would prove of little help in interpreting the strange new landscapes revealed in the Voyagers' astoundingly clear images of moons and planets.Speeding through space at a mind-bending eleven miles a second, Voyager 1 is now beyond our solar system's planets. It carries with it artifacts of human civilization. By the time Voyager passes its first star in about 40,000 years, the gold record on the spacecraft, containing various music and images including Chuck Berry's "Johnny B. Goode," will still be playable.

The God Particle: If the Universe Is the Answer, What Is the Question?


Leon M. Lederman - 1993
    The book takes us from the Greeks' earliest scientific observations through Einstein and beyond in an inspiring celebration of human curiosity. It ends with the quest for the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe. With a new preface by Lederman, The God Particle will leave you marveling at our continuing pursuit of the infinitesimal.

Zero: The Biography of a Dangerous Idea


Charles Seife - 2000
    For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.

Vacation Guide to the Solar System: Science for the Savvy Space Traveler!


Olivia Koski - 2017
    For a shorter trip on a tight budget, the Moon is quite majestic and very quiet if you can make it during the off-season. With four-color illustrations and packed with real-world science, The Vacation Guide to the Solar System is the must-have planning guide for the curious space adventurer, covering all of the essentials for your next voyage, how to get there, and what to do when you arrive. Written by an astronomer from The American Museum of Natural History and one of the creators of the Guerilla Science collective, this tongue-in-cheek reference guide is an imaginative exploration into the What if of space travel, sharing fascinating facts about space, the planets in our solar system, and even some moons!"

Exoplanets: Diamond Worlds, Super Earths, Pulsar Planets, and the New Search for Life beyond Our Solar System


Michael Summers - 2017
    Since its 2009 launch, the Kepler satellite has discovered more than two thousand exoplanets, or planets outside of our solar system. More and more exoplanets are being discovered all the time, and even more remarkable than the sheer number of exoplanets is their variety. In Exoplanets, astronomer Michael Summers and physicist James Trefil explore the unbelievable recent discoveries: planets revolving around pulsars, planets made out of diamond, planets that are mostly water, and numerous rogue planets wandering through the emptiness of space. This captivating book reveals the latest, greatest discoveries and argues that the incredible richness and complexity we are finding necessitates a change in the questions we ask and the mental paradigms we use. In short, we have to change how we think about the universe and our place in it, because it is stranger and more interesting than we can even begin to imagine.

The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet


Robert M. Hazen - 2012
    Hazen writes of how the co-evolution of the geosphere and biosphere—of rocks and living matter—has shaped our planet into the only one of its kind in the Solar System, if not the entire cosmos.With an astrobiologist’s imagination, a historian’s perspective, and a naturalist’s passion for the ground beneath our feet, Hazen explains how changes on an atomic level translate into dramatic shifts in Earth’s makeup over its 4.567 billion year existence. He calls upon a flurry of recent discoveries to portray our planet’s many iterations in vivid detail. Through his theory of “co-evolution,” we learn how reactions between organic molecules and rock crystals may have generated Earth’s first organisms, which in turn are responsible for more than two-thirds of the mineral varieties on the planet.The Story of Earth is also the story of the pioneering men and women behind the sciences. Readers will meet black-market meteorite hawkers of the Sahara Desert, the gun-toting Feds who guarded the Apollo missions’ lunar dust, and the World War II Navy officer whose super-pressurized “bomb”—recycled from military hardware—first simulated the molten rock of Earth’s mantle. As a mentor to a new generation of scientists, Hazen introduces the intrepid young explorers whose dispatches from Earth’s harshest landscapes will revolutionize geology.

What Einstein Told His Barber: More Scientific Answers to Everyday Questions


Robert L. Wolke - 2000
    Wolke, professor emeritus of chemistry at the University of Pittsburgh and acclaimed author of What Einstein Didn't Know, understands the need to...well, understand. Now he provides more amusing explanations of such everyday phenomena as gravity (If you're in a falling elevator, will jumping at the last instant save your life?) and acoustics (Why does a whip make such a loud cracking noise?), along with amazing facts, belly-up-to-the-bar bets, and mind-blowing reality bites all with his trademark wit and wisdom.If you shoot a bullet into the air, can it kill somebody when it comes down? You can find out about all this and more in an astonishing compendium of the proverbial mind-boggling mysteries of the physical world we inhabit.Arranged in a question-and-answer format and grouped by subject for browsing ease, WHAT EINSTEIN TOLD HIS BARBER is for anyone who ever pondered such things as why colors fade in sunlight, what happens to the rubber from worn-out tires, what makes red-hot objects glow red, and other scientific curiosities. Perfect for fans of Newton's Apple, Jeopardy!, and The Discovery Channel, WHAT EINSTEIN TOLD HIS BARBER also includes a glossary of important scientific buzz words and a comprehensive index. -->

The Planet Factory: Exoplanets and the Search for a Second Earth


Elizabeth Tasker - 2017
    Now it's one of the fastest-growing fields in astronomy with thousands of exoplanets discovered to date, and the number is rising fast.These new-found worlds are more alien than anything in fiction. Planets larger than Jupiter with years lasting a week; others with two suns lighting their skies, or with no sun at all. Planets with diamond mantles supporting oceans of tar; possible Earth-sized worlds with split hemispheres of perpetual day and night; waterworlds drowning under global oceans and volcanic lava planets awash with seas of magma. The discovery of this diversity is just the beginning. There is a whole galaxy of possibilities. The Planet Factory tells the story of these exoplanets. Each planetary system is different, but in the beginning most if not all young stars are circled by clouds of dust, specks that come together in a violent building project that can form colossal worlds hundreds of times the size of the Earth. The changing orbits of young planets risk dooming any life evolving on neighbouring worlds or, alternatively, can deliver the key ingredients needed to seed its beginnings. Planet formation is one of the greatest construction schemes in the Universe, and it occurred around nearly every star you see. Each results in an alien landscape, but is it possible that one of these could be like our own home world?

The Oxford Book of Modern Science Writing


Richard DawkinsD'Arcy Wentworth Thompson - 2008
    Readers will find excerpts from bestsellers such as Douglas R. Hofstadter's Gödel, Escher, Bach, Francis Crick's Life Itself, Loren Eiseley's The Immense Journey, Daniel Dennett's Darwin's Dangerous Idea, and Rachel Carson's The Sea Around Us. There are classic essays ranging from J.B.S. Haldane's "On Being the Right Size" and Garrett Hardin's "The Tragedy of the Commons" to Alan Turing's "Computing Machinery and Intelligence" and Albert Einstein's famed New York Times article on "Relativity." And readers will also discover lesser-known but engaging pieces such as Lewis Thomas's "Seven Wonders of Science," J. Robert Oppenheimer on "War and Physicists," and Freeman Dyson's memoir of studying under Hans Bethe.A must-read volume for all science buffs, The Oxford Book of Modern Science Writing is a rich and vibrant anthology that captures the poetry and excitement of scientific thought and discovery.One of New Scientist's Editor's Picks for 2008.

The Character of Physical Law


Richard P. Feynman - 1964
    He maintains at the outset that the importance of a physical law isn't "how clever we are to have found it out, but...how clever nature is to pay attention to it" & tends his discussions toward a final exposition of the elegance & simplicity of all scientific laws. Rather than an essay on the most significant achievements in modern science, The Character of Physical Law is a statement of what is most remarkable in nature. His enlightened approach, wit & enthusiasm make this a memorable exposition of the scientist's craft. The Law of Gravitation is the principal example. Relating the details of its discovery & stressing its mathematical character, he uses it to demonstrate the essential interaction of mathematics & physics. He views mathematics as the key to any system of scientific laws, suggesting that if it were possible to fill out the structure of scientific theory completely, the result would be an integrated set of axioms. The principles of conservation, symmetry & time-irreversibility are then considered in relation to developments in classical & modern physics. In his final lecture he develops his own analysis of the process & future of scientific discovery. Like any set of oral reflections, The Character of Physical Law has value as a demonstration of a mind in action. The reader is particularly lucky in Feynman. One of the most eminent & imaginative modern physicists, he was Professor of Theoretical Physics at the California Institute of Technology until his death in 1988. He's best known for work on the quantum theory of the electromagnetic field, as well as for later research in the field of low-temperature physics. In 1954 he received the Albert Einstein Award for an "outstanding contribution to knowledge in mathematical & physical sciences"; in 1965 he was appointed to Foreign Membership in the Royal Society & was awarded the Nobel Prize.

The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World


Edward Dolnick - 2011
    A meld of history and science, this book is a group portrait of some of the greatest minds who ever lived as they wrestled with nature’s most sweeping mysteries. The answers they uncovered still hold the key to how we understand the world.At the end of the seventeenth century—an age of religious wars, plague, and the Great Fire of London—when most people saw the world as falling apart, these earliest scientists saw a world of perfect order. They declared that, chaotic as it looked, the universe was in fact as intricate and perfectly regulated as a clock. This was the tail end of Shakespeare’s century, when the natural land the supernatural still twined around each other. Disease was a punishment ordained by God, astronomy had not yet broken free from astrology, and the sky was filled with omens. It was a time when little was known and everything was new. These brilliant, ambitious, curious men believed in angels, alchemy, and the devil, and they also believed that the universe followed precise, mathematical laws—-a contradiction that tormented them and changed the course of history.The Clockwork Universe is the fascinating and compelling story of the bewildered geniuses of the Royal Society, the men who made the modern world.

The Origin of Species


Charles Darwin - 1859
    Yet The Origin of Species (1859) is also a humane and inspirational vision of ecological interrelatedness, revealing the complex mutual interdependencies between animal and plant life, climate and physical environment, and—by implication—within the human world. Written for the general reader, in a style which combines the rigour of science with the subtlety of literature, The Origin of Species remains one of the founding documents of the modern age.

Introductory Astronomy and Astrophysics


Michael Zeilik - 1987
    It has an algebra and trigonometry prerequisite, but calculus is preferred.

One, Two, Three...Infinity: Facts and Speculations of Science


George Gamow - 1947
    . . full of intellectual treats and tricks, of whimsy and deep scientific philosophy. It is highbrow entertainment at its best, a teasing challenge to all who aspire to think about the universe." — New York Herald TribuneOne of the world's foremost nuclear physicists (celebrated for his theory of radioactive decay, among other accomplishments), George Gamow possessed the unique ability of making the world of science accessible to the general reader.He brings that ability to bear in this delightful expedition through the problems, pleasures, and puzzles of modern science. Among the topics scrutinized with the author's celebrated good humor and pedagogical prowess are the macrocosm and the microcosm, theory of numbers, relativity of space and time, entropy, genes, atomic structure, nuclear fission, and the origin of the solar system.In the pages of this book readers grapple with such crucial matters as whether it is possible to bend space, why a rocket shrinks, the "end of the world problem," excursions into the fourth dimension, and a host of other tantalizing topics for the scientifically curious. Brimming with amusing anecdotes and provocative problems, One Two Three . . . Infinity also includes over 120 delightful pen-and-ink illustrations by the author, adding another dimension of good-natured charm to these wide-ranging explorations.Whatever your level of scientific expertise, chances are you'll derive a great deal of pleasure, stimulation, and information from this unusual and imaginative book. It belongs in the library of anyone curious about the wonders of the scientific universe. "In One Two Three . . . Infinity, as in his other books, George Gamow succeeds where others fail because of his remarkable ability to combine technical accuracy, choice of material, dignity of expression, and readability." — Saturday Review of Literature

The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science


Richard Holmes - 2008
    It has been inspired by the scientific ferment that swept through Britain at the end of the 18th century, and which Holmes now radically redefines as 'the revolution of Romantic Science'.