Advanced Differential Equations


M.D. Raisinghania - 1995
    

The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe


Frank Close - 2011
    If found, the Higgs boson would help explain why everything has mass. But there’s more at stake—what we’re really testing is our capacity to make the universe reasonable. Our best understanding of physics is predicated on something known as quantum field theory. Unfortunately, in its raw form, it doesn’t make sense—its outputs are physically impossible infinite percentages when they should be something simpler, like the number 1. The kind of physics that the Higgs boson represents seeks to “renormalize” field theory, forcing equations to provide answers that match what we see in the real world.The Infinity Puzzle is the story of a wild idea on the road to acceptance. Only Close can tell it.

Problems & Solutions In Engineering Mechanics


S.S. Bhavikatti - 2009
    It then provides several well developed solved examples which illustrate the various dimensions of the concept under discussion. A set of practice problems is also included to encourage the student to test his mastery over the subject. The book would serve as an excellent text for both Degree and Diploma students of all engineering disciplines. AMIE candidates would also find it most useful.

Elementary Solid State Physics: Principles and Applications


M. Ali Omar - 1975
    I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Mathematics With Applications in Management and Economics/Solutions Manual


Earl K. Bowen - 1987
    

Student Solutions Manual and Study Guide for Serway/Jewett's Physics for Scientists and Engineers, Volume 1


Raymond A. Serway - 1982
    The manual also features a skills section, important notes from key sections of the text, and a list of important equations and concepts.

Emergence: The Connected Lives of Ants, Brains, Cities, and Software


Steven Johnson - 2001
    Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web? In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.

The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer


David Berlinski - 2000
    A basic idea that proved elusive for hundreds of years and bent the minds of the greatest thinkers in the world, the algorithm is what made the modern world possible. Without the algorithm, there would have been no computer, no Internet, no virtual reality, no e-mail, or any other technological advance that we rely on every day.In The Advent of the Algorithm, David Berlinski combines science, history, and math to explain and explore the intriguing story of how the algorithm was finally discovered by a succession of mathematicians and logicians, and how this paved the way for the digital age. Beginning with Leibniz and culminating in the middle of the twentieth century with the groundbreaking work of Gödel and Turing, The Advent of the Algorithm is an epic tale told with clarity and imaginative brilliance.

Bayesian Data Analysis


Andrew Gelman - 1995
    Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

Discrete Mathematical Structures


Bernard Kolman - 1995
    It covers areas such as fundamentals, logic, counting, relations and digraphs, trees, topics in graph theory, languages and finite-state machines, and groups and coding.

The Model Thinker: What You Need to Know to Make Data Work for You


Scott E. Page - 2018
    But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.

Chaos: A Very Short Introduction


Leonard A. Smith - 2007
    Even the simplest system of cause and effect can be subject to chaos, denying us accurate predictions of its behaviour, and sometimes giving rise to astonishing structures of large-scale order. Our growing understanding of Chaos Theory is having fascinating applications in the real world - from technology to global warming, politics, human behaviour, and even gambling on the stock market. Leonard Smith shows that we all have an intuitive understanding of chaotic systems. He uses accessible maths and physics (replacing complex equations with simple examples like pendulums, railway lines, and tossing coins) to explain the theory, and points to numerous examples in philosophy and literature (Edgar Allen Poe, Chang-Tzu, Arthur Conan Doyle) that illuminate the problems. The beauty of fractal patterns and their relation to chaos, as well as the history of chaos, and its uses in the real world and implications for the philosophy of science are all discussed in this Very Short Introduction.

Game Theory. Analysis of conflict


Roger B. Myerson - 1991
    Myerson introduces, clarifies, and synthesizes the extraordinary advances made in the subject over the past fifteen years, presents an overview of decision theory, and comprehensively reviews the development of the fundamental models: games in extensive form and strategic form, and Bayesian games with incomplete information.Game Theory will be useful for students at the graduate level in economics, political science, operations research, and applied mathematics. Everyone who uses game theory in research will find this book essential.

Understanding Analysis


Stephen Abbott - 2000
    The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.