Book picks similar to
Bootstrap Methods and Their Application by A.C. Davison
conservar
san-diego-padres
science-and-math
statistics
Essentials of Statistics for the Behavioral Sciences
Frederick J. Gravetter - 1991
The authors take time to explain statistical procedures so that you can go beyond memorizing formulas and gain a conceptual understanding of statistics. The authors also take care to show you how having an understanding of statistical procedures will help you comprehend published findings and will lead you to become a savvy consumer of information. Known for its exceptional accuracy and examples, this text also has a complete supplements package to support your learning.
The Drunkard's Walk: How Randomness Rules Our Lives
Leonard Mlodinow - 2008
From the classroom to the courtroom and from financial markets to supermarkets, Mlodinow's intriguing and illuminating look at how randomness, chance, and probability affect our daily lives will intrigue, awe, and inspire.
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
Intuitive Biostatistics
Harvey Motulsky - 1995
Intuitive Biostatistics covers all the topics typically found in an introductory statistics text, but with the emphasis on confidence intervals rather than P values, making it easier for students to understand both. Additionally, it introduces a broad range of topics left out of most other introductory texts but used frequently in biomedical publications, including survival curves. multiple comparisons, sensitivity and specificity of lab tests, Bayesian thinking, lod scores, and logistic, proportional hazards and nonlinear regression. By emphasizing interpretation rather than calculation, this text provides a clear and virtually painless introduction to statistical principles for those students who will need to use statistics constantly in their work. In addition, its practical approach enables readers to understand the statistical results published in biological and medical journals.
Probabilistic Graphical Models: Principles and Techniques
Daphne Koller - 2009
The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Principles of Mathematical Analysis
Walter Rudin - 1964
The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Internet & World Wide Web: How to Program
Paul Deitel - 1999
Internet and World Wide Web How to Program, 4e introduces students with little or no programming experience to the exciting world of Web-Based applications. The book has been substantially revised to reflect today's Web 2.0 rich Internet application-development methodologies. A comprehensive book that teaches the fundamentals needed to program on the Internet, this text provides in-depth coverage of introductory programmming principles, various markup languages (XHTML, Dynamic HTML and XML), several scripting languages (JavaScript, PHP, Ruby/Ruby on Rails and Perl); AJAX, web services, Web Servers (IIS and Apache) and relational databases (MySQL/Apache Derby/Java DB) -- all the skills and tools needed to create dynamic Web-based applications. The text contains comprehensive introductions to ASP.NET 2.0 and JavaServer Faces (JSF). Hundreds of live-code examples of real applications throughout the book available for download allow readers to run the applications and see and hear the outputs.The book provides instruction on building Ajax-enabled rich Internet applications that enhance the presentation of online content and give web applications the look and feel of desktop applications. The chapter on Web 2.0 and Internet business exposes readers to a wide range of other topics associated with Web 2.0 applications and businesses After mastering the material in this book, students will be well prepared to build real-world, industrial strength, Web-based applications.
Social Network Analysis: A Handbook
John P. Scott - 1991
It gives a clear and authoritative guide to the general framework of network analysis, explaining the basic concepts, technical measures and reviewing the available computer programs.The book outlines both the theoretical basis of network analysis and the key techniques for using it as a research tool. Building upon definitions of points, lines and paths, John Scott demonstrates their use in clarifying such measures as density, fragmentation and centralization. He identifies the various cliques, components and circles into which networks are formed, and outlines
Mathematical Methods in the Physical Sciences
Mary L. Boas - 1967
Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.
Operations Research: Applications and Algorithms (with CD-ROM and InfoTrac)
Wayne L. Winston - 1987
It moves beyond a mere study of algorithms without sacrificing the rigor that faculty desire. As in every edition, Winston reinforces the book's successful features and coverage with the most recent developments in the field. The Student Suite CD-ROM, which now accompanies every new copy of the text, contains the latest versions of commercial software for optimization, simulation, and decision analysis.
Artificial Intelligence: A Guide for Thinking Humans
Melanie Mitchell - 2019
The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it.In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go.Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Remote Sensing and Image Interpretation
Thomas M. Lillesand - 1979
The text examines the basics of analog image analysis while placing greater emphasis on digitally based systems and analysis techniques. The presentation is discipline neutral, so students in any field of study can gain a clear understanding of these systems and their virtually unlimited applications.
Networks: An Introduction
M.E.J. Newman - 2010
The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.
Requirements Engineering Fundamentals: A Study Guide for the Certified Professional for Requirements Engineering Exam - Foundation Level - IREB compliant
Klaus Pohl - 2009
In order to ensure a high level of knowledge and training, the International Requirements Engineering Board (IREB) worked out the training concept “Certified Professional for Requirements Engineering”, which defines a requirements engineer’s practical skills on different training levels. The book covers the different subjects of the curriculum for the “Certified Professional for Requirements Engineering” (CPRE) defined by the International Requirements Engineering Board (IREB). It supports its readers in preparing for the test to achieve the “Foundation Level” of the CPRE.