Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers
John MacCormick - 2012
A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.
How to Lie with Statistics
Darrell Huff - 1954
Darrell Huff runs the gamut of every popularly used type of statistic, probes such things as the sample study, the tabulation method, the interview technique, or the way the results are derived from the figures, and points up the countless number of dodges which are used to fool rather than to inform.
Financial Intelligence: A Manager's Guide to Knowing What the Numbers Really Mean
Karen Berman - 2006
But many managers can't read a balance sheet, wouldn't recognize a liquidity ratio, and don't know how to calculate return on investment. Worse, they don't have any idea where the numbers come from or how reliable they really are. In Financial Intelligence, Karen Berman and Joe Knight teach the basics of finance--but with a twist. Financial reporting, they argue, is as much art as science. Because nobody can quantify everything, accountants always rely on estimates, assumptions, and judgment calls. Savvy managers need to know how those sources of possible bias can affect the financials and that sometimes the numbers can be challenged. While providing the foundation for a deep understanding of the financial side of business, the book also arms managers with practical strategies for improving their companies' performance--strategies, such as "managing the balance sheet," that are well understood by financial professionals but rarely shared with their nonfinancial colleagues. Accessible, jargon-free, and filled with entertaining stories of real companies, Financial Intelligence gives nonfinancial managers the financial knowledge and confidence for their everyday work. Karen Berman and Joe Knight are the owners of the Los Angeles-based Business Literacy Institute and have trained tens of thousands of managers at many leading organizations. Co-author John Case has written several popular books on management.
Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor
Virginia Eubanks - 2018
In Pittsburgh, a child welfare agency uses a statistical model to try to predict which children might be future victims of abuse or neglect.Since the dawn of the digital age, decision-making in finance, employment, politics, health and human services has undergone revolutionary change. Today, automated systems—rather than humans—control which neighborhoods get policed, which families attain needed resources, and who is investigated for fraud. While we all live under this new regime of data, the most invasive and punitive systems are aimed at the poor.In Automating Inequality, Virginia Eubanks systematically investigates the impacts of data mining, policy algorithms, and predictive risk models on poor and working-class people in America. The book is full of heart-wrenching and eye-opening stories, from a woman in Indiana whose benefits are literally cut off as she lays dying to a family in Pennsylvania in daily fear of losing their daughter because they fit a certain statistical profile.The U.S. has always used its most cutting-edge science and technology to contain, investigate, discipline and punish the destitute. Like the county poorhouse and scientific charity before them, digital tracking and automated decision-making hide poverty from the middle-class public and give the nation the ethical distance it needs to make inhumane choices: which families get food and which starve, who has housing and who remains homeless, and which families are broken up by the state. In the process, they weaken democracy and betray our most cherished national values.This deeply researched and passionate book could not be more timely.Naomi Klein: "This book is downright scary."Ethan Zuckerman, MIT: "Should be required reading."Dorothy Roberts, author of Killing the Black Body: "A must-read for everyone concerned about modern tools of inequality in America."Astra Taylor, author of The People's Platform: "This is the single most important book about technology you will read this year."
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
Learning Spark: Lightning-Fast Big Data Analysis
Holden Karau - 2013
How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates.
Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning.
Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell
Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib
Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm
Learn how to deploy interactive, batch, and streaming applications
Connect to data sources including HDFS, Hive, JSON, and S3
Master advanced topics like data partitioning and shared variables
The Future Computed: Artificial Intelligence and its Role in Society
Microsoft Corporation - 2018
It’s already happening in impressive ways. But as we’ve witnessed over the past 20 years, new technology also inevitably raises complex questions and broad societal concerns.” – Brad Smith and Harry Shum on The Future Computed. “As we look to a future powered by a partnership between computers and humans, it’s important that we address these challenges head on. How do we ensure that AI is designed and used responsibly? How do we establish ethical principles to protect people? How should we govern its use? And how will AI impact employment and jobs?” – Brad Smith and Harry Shum on The Future Computed. As Artificial Intelligence shows up in every aspect of our lives, Microsoft's top minds provide a guide discussing how we should prepare for the future. Whether you're a government leader crafting new laws, an entrepreneur looking to incorporate AI into your business, or a parent contemplating the future of education, this book explains the trends driving the AI revolution, identifies the complex ethics and workforce issues we all need to think about and suggests a path forward. Read more: The Future Computed: Artificial Intelligence and its role in society provides Microsoft’s perspective on where AI technology is going and the new societal issues it is raising – ensuring AI is designed and used responsibly, establishing ethical principles to protect people, and how AI will impact employment and jobs. The principles of fairness, reliability and safety, privacy and security, inclusiveness, transparency and accountability are critical to addressing the societal impacts of AI and building trust as AI becomes more and more a part of the products and services that people use at work and at home every day. A central theme in The Future Computed is that for AI to deliver on its potential drive widespread economic and social progress, the technology needs to be human-centered – combining the capabilities of computers with human capabilities to enable people to achieve more. But a human-centered approach can only be realized if researchers, policymakers, and leaders from government, business and civil society come together to develop a shared ethical framework for AI. This in turn will help foster responsible development of AI systems that will engender trust. Because in an increasingly AI-driven world the question is not what computers can do, it is what computers should do. The Future Computed also draws a few conclusions as we chart our path forward. First, the companies and countries that will fare best in the AI era will be those that embrace these changes rapidly and effectively. Second, while AI will help solve big societal problems, we must look to this future with a critical eye as there will be challenges as well as opportunities. Third, we need to act with a sense of shared responsibility because AI won’t be created by the tech sector alone. Finally, skilling-up for an AI-powered world involves more than science, technology, engineering and math. As computers behave more like humans, the social sciences and humanities will become grow in importance.
The R Book
Michael J. Crawley - 2007
The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.
Building Microservices: Designing Fine-Grained Systems
Sam Newman - 2014
But developing these systems brings its own set of headaches. With lots of examples and practical advice, this book takes a holistic view of the topics that system architects and administrators must consider when building, managing, and evolving microservice architectures.Microservice technologies are moving quickly. Author Sam Newman provides you with a firm grounding in the concepts while diving into current solutions for modeling, integrating, testing, deploying, and monitoring your own autonomous services. You'll follow a fictional company throughout the book to learn how building a microservice architecture affects a single domain.Discover how microservices allow you to align your system design with your organization's goalsLearn options for integrating a service with the rest of your systemTake an incremental approach when splitting monolithic codebasesDeploy individual microservices through continuous integrationExamine the complexities of testing and monitoring distributed servicesManage security with user-to-service and service-to-service modelsUnderstand the challenges of scaling microservice architectures
Data Feminism
Catherine D’Ignazio - 2020
It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought.Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.”Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.
Sams Teach Yourself SQL™ in 10 Minutes
Ben Forta - 1999
It also covers MySQL, and PostgreSQL. It contains examples which have been tested against each SQL platform, with incompatibilities or platform distinctives called out and explained.
The Model Thinker: What You Need to Know to Make Data Work for You
Scott E. Page - 2018
But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.
The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win
Gene Kim - 2013
It's Tuesday morning and on his drive into the office, Bill gets a call from the CEO. The company's new IT initiative, code named Phoenix Project, is critical to the future of Parts Unlimited, but the project is massively over budget and very late. The CEO wants Bill to report directly to him and fix the mess in ninety days or else Bill's entire department will be outsourced. With the help of a prospective board member and his mysterious philosophy of The Three Ways, Bill starts to see that IT work has more in common with manufacturing plant work than he ever imagined. With the clock ticking, Bill must organize work flow streamline interdepartmental communications, and effectively serve the other business functions at Parts Unlimited. In a fast-paced and entertaining style, three luminaries of the DevOps movement deliver a story that anyone who works in IT will recognize. Readers will not only learn how to improve their own IT organizations, they'll never view IT the same way again.