Imagining the Tenth Dimension: A New Way of Thinking about Time and Space


Rob Bryanton - 2006
    Ten dimensions? Most of us have barely gotten used to the idea that there are four.Using simple geometry and an easygoing writing style, author Rob Bryanton starts with the lower dimensions that we are all familiar with, then uses those concepts to build one layer upon another, ultimately arriving at a way of imagining the tenth dimension.Part scientific exploration, part philosophy, this unique book touches upon such diverse topics as dark matter, Feynman's "sum over paths", the quantum observer, and the soul. It is aimed at anyone interested in leading-edge theories about cosmology and the nature of reality, but it is not about mainstream physics. Rather, Imagining the Tenth Dimension is a mind-expanding exercise that could change the way you view this incredible universe in which we live.

Fundamental: How quantum and particle physics explain absolutely everything (except gravity)


Tim James - 2019
    In the quantum realm, objects can be in two places at once. It's a place where time travel is not only possible, but necessary. It's a place where cause and effect can happen in reverse and observing something changes its state. From parallel universes to antimatter, quantum mechanics has revealed that when you get right down to it, the laws of nature are insane. The scientist J. B. S. Haldane once said, 'Reality is not only stranger than we imagine . . . it's stranger than we can imagine.' Never is this more true than with quantum mechanics; our best, most recent attempt to make sense of the fundamental laws of nature.Fundamental is a comprehensive beginner's guide to quantum mechanics, explaining not only the weirdness of the subject but the experiments that proved it to be true. Using a humorous and light-hearted approach, Fundamental tells the story of how the most brilliant minds in science grappled with seemingly impossible ideas and gave us everything from microchips to particle accelerators. Fundamental gives clear explanations of all the quantum phenomena known to modern science, without requiring an understanding of complex mathematics; tells the eccentric stories of the scientists who made these shattering discoveries and what they used them for; explains how quantum field theory (a topic not covered in detail by any other popular-science book) gave rise to particle physics and why the Higgs boson isn't the end of the story.

Red Giants and White Dwarfs


Robert Jastrow - 1967
    "A masterpiece of science."—Werner von Braun.

First Light: Switching on Stars at the Dawn of Time


Emma Chapman - 2020
    There's a lot for astronomers to be smug about. But when it comes to understanding how the Universe began and grew up we are literally in the dark ages. In effect, we are missing the first one billion years from the timeline of the Universe.This brief but far-reaching period in the Universe's history, known to astrophysicists as the 'Epoch of Reionisation', represents the start of the cosmos as we experience it today. The time when the very first stars burst into life, when darkness gave way to light. After hundreds of millions of years of dark, uneventful expansion, one by the one these stars suddenly came into being. This was the point at which the chaos of the Big Bang first began to yield to the order of galaxies, black holes and stars, kick-starting the pathway to planets, to comets, to moons, and to life itself.Incorporating the very latest research into this branch of astrophysics, this book sheds light on this time of darkness, telling the story of these first stars, hundreds of times the size of the Sun and a million times brighter, lonely giants that lived fast and died young in powerful explosions that seeded the Universe with the heavy elements that we are made of. Emma Chapman tells us how these stars formed, why they were so unusual, and what they can teach us about the Universe today. She also offers a first-hand look at the immense telescopes about to come on line to peer into the past, searching for the echoes and footprints of these stars, to take this period in the Universe's history from the realm of theoretical physics towards the wonder of observational astronomy.

Introducing Relativity: A Graphic Guide


Bruce Bassett - 2002
    Beginning near the speed of light and proceeding to explorations of space-time and curved spaces, "Introducing Relativity" plots a visually accessible course through the thought experiments that have given shape to contemporary physics. Scientists from Newton to Hawking add their unique contributions to this story, as we encounter Einstein's astounding vision of gravity as the curvature of space-time and arrive at the breathtakingly beautiful field equations. Einstein's legacy is reviewed in the most advanced frontiers of physics today - black holes, gravitational waves, the accelerating universe and string theory. This is a superlative, fascinating graphic account of Einstein's strange world and how his legacy has been built upon since.

Conscious Robots: Facing up to the reality of being human.


Paul Kwatz - 2005
    Conscious Robots challenges us to face up to the reality of being human: just because we're conscious doesn't mean we're not robots. So what would we do with free will if we really had it? And how does “being a robot” explain why life, as Buddha suggested, is “inherently unsatisfactory”, despite our luxurious homes, successful careers and loving families? Conscious Robots shows why we’re so convinced that we’re in charge, when we’re really just carrying out our evolved pre-programmed instructions. And reveals the inevitable future, how one day humans will take control of their conscious minds, get happy and stay happy. But it will come too late for you, Dear Reader… so no point buying the book. Unless you’re extremely rich, of course. Then you can pay for the neurochemical research yourself. “Easy to understand and persuasive” “Reminded me of Douglas Adams and Terry Pratchett”

The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.

How to Make an Apple Pie from Scratch: In Search of the Recipe for Our Universe


Harry Cliff - 2021
    He ventures to the largest underground research facility in the world, deep beneath Italy's Gran Sasso mountains, where scientists gaze into the heart of the Sun using the most elusive of particles, the ghostly neutrino. He visits CERN in Switzerland to explore the Antimatter Factory, where the stuff of science fiction is manufactured daily (and we're close to knowing whether it falls up). And he reveals what the latest data from the Large Hadron Collider may be telling us about the fundamental nature of matter.Along the way, Cliff illuminates the history of physics, chemistry, and astronomy that brought us to our present understanding--and misunderstandings--of the world, while offering readers a front-row seat to one of the most dramatic intellectual journeys human beings have ever embarked on.A transfixing deep dive into origins of our world, How to Make an Apple Pie from Scratch examines not just the makeup of our universe, but the awe-inspiring, improbable fact that it exists at all.

Young Einstein: And the story of E=mc² (Kindle Single)


Robyn Arianrhod - 2014
    But what sort of person was the young Albert Einstein, before he became universally acclaimed as the archetypal genius? And how did his genius unfold? In this brilliant new Kindle Single, scientist Robyn Arianrhod blends biography with popular science to tell the story of how young Albert developed a theory that – unknown to him at first – contained the seeds of his extraordinary equation E = mc2. Arianrhod, who wrote her PhD on Einstein’s general theory of relativity, makes the ideas behind the equation accessible to the lay reader, and sets young Einstein’s exploration of these ideas against the backdrop of his first loves, his family and marriage, and, above all, his childlike wonder at the nature of the universe. She introduces his heroes and scientific inspirations, and the friends who believed in him when no one else did. In personalising Einstein, she brings to life both the man and his science, in a short, easy-to-read narrative. In showing how he discovered his famous equation, and what it means, she draws a compelling portrait of this prodigious intellect whose unfathomable grasp of the building blocks of physics would change our world forever. About the Author: Dr Robyn Arianrhod is the author of two critically acclaimed works of popular science and scientific history: Einstein’s Heroes: Imagining the World Through the Language of Mathematics, and Seduced by Logic: Émilie du Châtelet, Mary Somerville and the Newtonian Revolution. Both were shortlisted for major book awards and are published in the USA. Einstein’s Heroes was translated into several languages. Robyn was awarded her PhD for research on Einstein’s general theory of relativity and has lectured in applied mathematics (including special relativity) for many years. She is currently an Adjunct Research Fellow in the School of Mathematical Sciences at Monash University in Melbourne, where she is undertaking research on the structure of relativistic space-times. She is also a technical reviewer for the American Mathematical Society. Praise for Robyn Arianrhod's books: Einstein’s Heroes ‘Arianrhod’s achievement is to so masterfully combine history, biography, and mathematics as to absorb and enlighten even the mathematically maladroit’ – Booklist ‘An intriguing blend of science, history, and biography . . . Arianrhod’s well-written, fascinating discussion of intertwined topics is highly recommended’ – Library Journal (starred review) ‘A thrilling story . . . Arianrhod brings out the human side of the scientists’ – Bloombergnews ‘Offers readers an engaging intellectual exercise combining physics, language, mathematics, and biography’ – Science News Seduced by Logic ‘Seduced by Logic offers the lay reader an easy and agreeable introduction to the evolution of some crucial scientific debates . . . One cannot help be captivated by her intellectual honesty and enthusiasm’ – Times Higher Education ‘An elegant and inspiring history of how scientific revolutions make their way’ – Edward Dolnick, The Clockwork Universe ‘Here is a skillfully written tapestry of the science, history and portrayal of two of the most charismatic women of mathematical science. Robyn Arianrhod has produced a captivating masterpiece’ – Joseph Mazur, author of Euclid in the Rainforest and What’s Luck Got to Do with It?

Brief History of the Philosophy of Time


Adrian Bardon - 2013
    Bardon employs helpful illustrations and keeps technical language to a minimum in bringing the resources of over 2500 years of philosophy and science to bear on some of humanity's most fundamental and enduring questions.

The Undivided Universe: An Ontological Interpretation of Quantum Theory


David Bohm - 1993
    They develop an interpretation of quantum mechanics which gives a clear, intuitive understanding of its meaning and in which there is a coherent notion of the reality of the universe without assuming a fundamental role for the human observer. With the aid of new concepts such as active information together with non-locality, they provide a comprehensive account of all the basic features of quantum mechanics, including the relativistic domain and quantum field theory. It is shown that, with the new approach, paradoxical or unsatisfactory features associated with the standard approaches, such as the wave-particle duality and the collapse of the wave function, do not arise. Finally, the authors make new suggestions and indicate some areas in which one may expect quantum theory to break down in a way that will allow for a test. The Undivided Universe is an important book especially because it provides a different overall world view which is neither mechanistic nor reductionist. This view will ultimately have radical implications not only in physics but also in our general approach to all areas of life.

Principles of Physics


David Halliday - 2010
    A number of the key figures in the new edition are revised to provide a more inviting and informative treatment. The figures are broken into component parts with supporting commentary so that they can more readily see the key ideas. Material from The Flying Circus is incorporated into the chapter opener puzzlers, sample problems, examples and end-of-chapter problems to make the subject more engaging. Checkpoints enable them to check their understanding of a question with some reasoning based on the narrative or sample problem they just read. Sample Problems also demonstrate how engineers can solve problems with reasoned solutions.

Introducing Time


Craig Callender - 1997
    Traces the history of time from Augustine's suggestion that there is no time, to the flowing time of Newton, the static time of Einstein, and then back, to the idea that there is no time in quantum gravity.

What's Eating the Universe?: And Other Cosmic Questions


Paul C.W. Davies - 2021
      In the constellation of Eridanus, there lurks a cosmic mystery: It’s as if something has taken a huge bite out of the universe. But what is the culprit? The hole in the universe is just one of many puzzles keeping cosmologists busy. Supermassive black holes, bubbles of nothingness gobbling up space, monster universes swallowing others—these and many other bizarre ideas are being pursued by scientists. Due to breathtaking progress in astronomy, the history of our universe is now better understood than the history of our own planet. But these advances have uncovered some startling riddles. In this electrifying new book, renowned cosmologist and author Paul Davies lucidly explains what we know about the cosmos and its enigmas, exploring the tantalizing—and sometimes terrifying—possibilities that lie before us. As Davies guides us through the audacious research offering mind-bending solutions to these and other mysteries, he leads us up to the greatest outstanding conundrum of all: Why does the universe even exist in the first place? And how did a system of mindless, purposeless particles manage to bring forth conscious, thinking beings? Filled with wit and wonder, What’s Eating the Universe? is a dazzling tour of cosmic questions, sure to entertain, enchant, and inspire us all.

Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity


Steven Weinberg - 1972
    Unique in basing relativity on the Principle of Equivalence of Gravitation and Inertia over Riemannian geometry, this book explores relativity experiments and observational cosmology to provide a sound foundation upon which analyses can be made. Covering special and general relativity, tensor analysis, gravitation, curvature, and more, this book provides an engaging, insightful introduction to the forces that shape the universe.