Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Python for Kids


Jason R. Briggs - 2012
    Jason Briggs, author of the popular online tutorial "Snake Wrangling for Kids," begins with the basics of how to install Python and write simple commands. In bite-sized chapters, he instructs readers on the essentials of Python, including how to use Python's extensive standard library, the difference between strings and lists, and using for-loops and while-loops. By the end of the book, readers have built a game and created drawings with Python's graphics library, Turtle. Each chapter closes with fun and relevant exercises that challenge the reader to put their newly acquired knowledge to the test.

C++ Primer


Stanley B. Lippman - 1989
    This Fourth Edition not only keeps this tradition alive, it actually improves on it."--Steve Vinoski, Chief Engineer, Product Innovation, IONA Technologies" The Primer really brings this large and complex language down to size."--Justin Shaw, Senior Member of Technical Staff, Electronic Programs Division, The Aerospace Corporation"It not only gets novices up and running early, but gets them to do so using good programming practices."--Nevin ": -)" Liber, Senior Principal Engineer (C++ developer since 1988)This popular tutorial introduction to standard C++ has been completely updated, reorganized, and rewritten to help programmers learn the language faster and use it in a more modern, effective way.Just as C++ has evolved since the last edition, so has the authors' approach to teaching it. They now introduce the C++ standard library from the beginning, giving readers the means to write useful programs without first having to master every language detail. Highlighting today's best practices, they show how to write programs that are safe, can be built quickly, and yet offer outstanding performance. Examples that take advantage of the library, and explain the features of C++, also show how to make the best use of the language. As in its previous editions, the book's authoritative discussion of fundamental C++ concepts and techniques makes it a valuable resource even for more experienced programmers.Program Faster and More Effectively with This Rewritten ClassicRestructured for quicker learning, using the C++ standard libraryUpdated to teach the most current programming styles and program design techniquesFilled with new learning aids that emphasize important points, warn about common pitfalls, suggest good programming practices, and provide general usage tipsComplete with exercises that reinforce skills learnedAuthoritative and comprehensive in its coverage The source code for the book's extended examples is available on the Web at the address below.www.awprofessional.com/cpp_primer

From Mathematics to Generic Programming


Alexander A. Stepanov - 2014
    If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Laravel: Up and Running: A Framework for Building Modern PHP Apps


Matt Stauffer - 2016
    This rapid application development framework and its vast ecosystem of tools let you quickly build new sites and applications with clean, readable code. With this practical guide, Matt Stauffer--a leading teacher and developer in the Laravel community--provides the definitive introduction to one of today's most popular web frameworks.The book's high-level overview and concrete examples will help experienced PHP web developers get started with Laravel right away. By the time you reach the last page, you should feel comfortable writing an entire application in Laravel from scratch.Dive into several features of this framework, including:Blade, Laravel's powerful, custom templating toolTools for gathering, validating, normalizing, and filtering user-provided dataLaravel's Eloquent ORM for working with the application's databasesThe Illuminate request object, and its role in the application lifecyclePHPUnit, Mockery, and PHPSpec for testing your PHP codeLaravel's tools for writing JSON and RESTful APIsInterfaces for file system access, sessions, cookies, caches, and searchTools for implementing queues, jobs, events, and WebSocket event publishingLaravel's specialty packages: Scout, Passport, Cashier, Echo, Elixir, Valet, and Socialite

The Principles of Beautiful Web Design


Jason Beaird - 2007
    A simple, easy-to-follow guide, illustrated with plenty of full-color examples, this book will lead you through the process of creating great designs from start to finish. Good design principles are not rocket science, and using the information contained in this book will help you create stunning web sites.Understand the design process, from discovery to implementation Understand what makes "good design" Developing pleasing layouts using grids, the rule of thirds, balance and symmetry Use color effectively, develop color schemes and create a palette Use textures, lines, points, shapes, volumes and depth Learn how good typography can make ordinary designs look great Effective imagery: choosing, editing and placing images And much more Throughout the book, you'll follow an example design, from concept to completion, learning along the way. The book's full-color layout and large format (8" x 10") make The Principles Of Beautiful Wed Design a pleasure to read.Editorial Reviews"The Principles of Beautiful Web Design is a good book to kick start your graphic-design journey. The biggest benefit that I got from this book is the knowledge to learn from great designs as opposed to just admiring them in a state of awe." - Slashdot.org"Jason is a great writer, and the book is quite easy to read. It's put together wonderfully, including many full color screenshots and other forms of imagery that make the book a pleasure to read. I'd definitely recommend the book to anyone in Web design." - MondayByNoon"Jason Beaird covers web design in a way that non-designers can understand. He walks you through all of the aspects of design development from initial meeting to finished product. If you are just getting into web development, this is a must read." - Blogcritics.org"This is a thoroughly practical guide to web design that is very well written: good technical depth in easy-to-understand language with excellent illustrations and graphics that support the text. For many users it will be the only web-design text they will need. For those who want to further advance their skills and knowledge it will provide a sound foundation." - PC Update"His "Don't just tell, show!" style makes this book accessible to everyone... It strikes a carefully thought-out balance between describing principles and illustrating them. It is clear and well structured, with practical examples in every chapter." - Mitch Wheat

Peopleware: Productive Projects and Teams


Tom DeMarco - 1987
    The answers aren't easy -- just incredibly successful.

Building Maintainable Software


Joost Visser - 2015
    Be part of the solution. With this practical book, you'll learn 10 easy-to-follow guidelines for delivering software that's easy to maintain and adapt. These guidelines have been derived from analyzing hundreds of real-world systems.Written by consultants from the Software Improvement Group (SIG), this book provides clear and concise explanations, with advice for turning the guidelines into practice. Examples are written in Java, but this guide is equally useful for developers working in other programming languages.10 Coding Guidelines- Write short units of code: limit the length of methods and constructors- Write simple units of code: limit the number of branch points per method- Write code once, rather than risk copying buggy code- Keep unit interfaces small by extracting parameters into objects- Separate concerns to avoid building large classes- Couple architecture components loosely- Balance the number and size of top-level components in your code- Keep your codebase as small as possible- Automate tests for your codebase- Write clean code, avoiding "code smells" that indicate deeper problemsWhy you should read this bookTaken in isolation, the guidelines presented in this book are well-known. In fact, many well-known tools for code analysis check a number of the guidelines presented here. The following three characteristics set this book apart from other books on software development: We have selected the ten most important guidelines from experience.We teach how to comply with these ten guidelines.We present statistics and examples from real-world systems.This book is part our Training on Software Maintainability - and subsequent Certification on Quality Software Development program. For more information about this program, please contact training@sig.eu.

Operating System Concepts


Abraham Silberschatz - 1985
    By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.

Software Engineering at Google: Lessons Learned from Programming Over Time


Titus Winters - 2020
    With this book, you'll get a candid and insightful look at how software is constructed and maintained by some of the world's leading practitioners.Titus Winters, Tom Manshreck, and Hyrum K. Wright, software engineers and a technical writer at Google, reframe how software engineering is practiced and taught: from an emphasis on programming to an emphasis on software engineering, which roughly translates to programming over time.You'll learn:Fundamental differences between software engineering and programmingHow an organization effectively manages a living codebase and efficiently responds to inevitable changeWhy culture (and recognizing it) is important, and how processes, practices, and tools come into play

An Introduction to General Systems Thinking


Gerald M. Weinberg - 1975
    Used in university courses and professional seminars all over the world, the text has proven its ability to open minds and sharpen thinking.Originally published in 1975 and reprinted more than twenty times over a quarter century -- and now available for the first time from Dorset House Publishing -- the text uses clear writing and basic algebraic principles to explore new approaches to projects, products, organizations, and virtually any kind of system.Scientists, engineers, organization leaders, managers, doctors, students, and thinkers of all disciplines can use this book to dispel the mental fog that clouds problem-solving. As author Gerald M. Weinberg writes in the new preface to the Silver Anniversary Edition, "I haven’t changed my conviction that most people don’t think nearly as well as they could had they been taught some principles of thinking.”Now an award-winning author of nearly forty books spanning the entire software development life cycle, Weinberg had already acquired extensive experience as a programmer, manager, university professor, and consultant when this book was originally published.With helpful illustrations, numerous end-of-chapter exercises, and an appendix on a mathematical notation used in problem-solving, An Introduction to General Systems Thinking may be your most powerful tool in working with problems, systems, and solutions.

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

Why Software Sucks...and What You Can Do about It


David S. Platt - 2006
    . . . Put this one on your must-have list if you have software, love software, hate programmers, or even ARE a programmer, because Mr. Platt (who teaches programming) has set out to puncture the bloated egos of all those who think that just because they can write a program, they can make it easy to use. . . . This book is funny, but it is also an important wake-up call for software companies that want to reduce the size of their customer support bills. If you were ever stuck for an answer to the question, 'Why do good programmers make such awful software?' this book holds the answer."--John McCormick, Locksmith columnist, TechRepublic.com "I must say first, I don't get many computing manuscripts that make me laugh out loud. Between the laughs, Dave Platt delivers some very interesting insight and perspective, all in a lucid and engaging style. I don't get much of that either!"--Henry Leitner, assistant dean for information technology andsenior lecturer on computer science, Harvard University "A riotous book for all of us downtrodden computer users, written in language that we understand."--Stacy Baratelli, author's barber "David's unique take on the problems that bedevil software creation made me think about the process in new ways. If you care about the quality of the software you create or use, read this book."--Dave Chappell, principal, Chappell & Associates "I began to read it in my office but stopped before I reached the bottom of the first page. I couldn't keep a grin off my face! I'll enjoy it after I go back home and find a safe place to read."--Tsukasa Makino, IT manager "David explains, in terms that my mother-in-law can understand, why the software we use today can be so frustrating, even dangerous at times, and gives us some real ideas on what we can do about it."--Jim Brosseau, Clarrus Consulting Group, Inc. A Book for Anyone Who Uses a Computer Today...and Just Wants to Scream! Today's software sucks. There's no other good way to say it. It's unsafe, allowing criminal programs to creep through the Internet wires into our very bedrooms. It's unreliable, crashing when we need it most, wiping out hours or days of work with no way to get it back. And it's hard to use, requiring large amounts of head-banging to figure out the simplest operations.It's no secret that software sucks. You know that from personal experience, whether you use computers for work or personal tasks. In this book, programming insider David Platt explains why that's the case and, more importantly, why it doesn't have to be that way. And he explains it in plain, jargon-free English that's a joy to read, using real-world examples with which you're already familiar. In the end, he suggests what you, as a typical user, without a technical background, can do about this sad state of our software--how you, as an informed consumer, don't have to take the abuse that bad software dishes out.As you might expect from the book's title, Dave's expose is laced with humor--sometimes outrageous, but always dead on. You'll laugh out loud as you recall incidents with your own software that made you cry. You'll slap your thigh with the same hand that so often pounded your computer desk and wished it was a bad programmer's face. But Dave hasn't written this book just for laughs. He's written it to give long-overdue voice to your own discovery--that software does, indeed, suck, but it shouldn't.