Book picks similar to
A Guide to Experimental Algorithmics by Catherine C. McGeoch
have-softcopy
hiatus
next-in-read
technical
Algorithms
Sanjoy Dasgupta - 2006
Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Head First HTML and CSS
Elisabeth Robson - 2012
You want to learn HTML so you can finally create those web pages you've always wanted, so you can communicate more effectively with friends, family, fans, and fanatic customers. You also want to do it right so you can actually maintain and expand your web pages over time so they work in all browsers and mobile devices. Oh, and if you've never heard of CSS, that's okay--we won't tell anyone you're still partying like it's 1999--but if you're going to create web pages in the 21st century then you'll want to know and understand CSS. Learn the real secrets of creating web pages, and why everything your boss told you about HTML tables is probably wrong (and what to do instead). Most importantly, hold your own with your co-worker (and impress cocktail party guests) when he casually mentions how his HTML is now strict, and his CSS is in an external style sheet. With Head First HTML, you'll avoid the embarrassment of thinking web-safe colors still matter, and the foolishness of slipping a font tag into your pages. Best of all, you'll learn HTML and CSS in a way that won't put you to sleep. If you've read a Head First book, you know what to expect: a visually-rich format designed for the way your brain works. Using the latest research in neurobiology, cognitive science, and learning theory, this book will load HTML and CSS into your brain in a way that sticks. So what are you waiting for? Leave those other dusty books behind and come join us in Webville. Your tour is about to begin.
Programming Ruby: The Pragmatic Programmers' Guide
Dave Thomas - 2000
When Ruby first burst onto the scene in the Western world, the Pragmatic Programmers were there with the definitive reference manual, Programming Ruby: The Pragmatic Programmer's Guide.Now in its second edition, author Dave Thomas has expanded the famous Pickaxe book with over 200 pages of new content, covering all the improved language features of Ruby 1.8 and standard library modules. The Pickaxe contains four major sections:An acclaimed tutorial on using Ruby.The definitive reference to the language.Complete documentation on all built-in classes, modules, and methodsComplete descriptions of all 98 standard libraries.If you enjoyed the First Edition, you'll appreciate the expanded content, including enhanced coverage of installation, packaging, documenting Ruby source code, threading and synchronization, and enhancing Ruby's capabilities using C-language extensions. Programming for the World Wide Web is easy in Ruby, with new chapters on XML/RPC, SOAP, distributed Ruby, templating systems, and other web services. There's even a new chapter on unit testing.This is the definitive reference manual for Ruby, including a description of all the standard library modules, a complete reference to all built-in classes and modules (including more than 250 significant changes since the First Edition). Coverage of other features has grown tremendously, including details on how to harness the sophisticated capabilities of irb, so you can dynamically examine and experiment with your running code. Ruby is a wonderfully powerful and useful language, and whenever I'm working with it this book is at my side --Martin Fowler, Chief Scientist, ThoughtWorks
Make Your Own Neural Network
Tariq Rashid - 2016
Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
Data Structure Through C
Yashavant P. Kanetkar - 2003
It adopts a novel approach, by using the programming language c to teach data structures. The book discusses concepts like arrays, algorithm analysis, strings, queues, trees and graphs. Well-designed animations related to these concepts are provided in the cd-rom which accompanies the book. This enables the reader to get a better understanding of the complex procedures described in the book through a visual demonstration of the same. Data structure through c is a comprehensive book which can be used as a reference book by students as well as computer professionals. It is written in a clear, easy-to-understood manner and it includes several programs and examples to explain clearly the complicated concepts related to data structures. The book was published by bpb publications in 2003 and is available in paperback. Key features: the book contains example programs that elucidate the concepts. It comes with a cd that visually demonstrates the theory presented in the book.
A New Kind of Science
Stephen Wolfram - 1997
Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton
Functional Programming in JavaScript
Luis Atencio - 2016
Through concrete examples and jargon-free explanations, this book teaches you how to apply functional programming to real-life development tasks. The book includes insightful comparisons to object-oriented or imperative programming, which will allow you to ease into functional design. Moreover, you'll learn a repertoire of techniques including function chaining and pipelining, recursion, currying, binding, functional composition, lazy evaluation, fluent error handling, memoization, and much more. By the end of the book, you'll think about application design in a fresh new way.About the technologyAs web developers build increasingly complex applications in JavaScript, the code base for these projects can become exponentially larger and harder to maintain. The result? Application performance suffers, and readability and extensibility are severely compromised. For applications like these, Functional Programming provides a saner approach, allowing you to write elegant, readable code that raises the level of abstraction while being less prone to errors. Although not a "pure" functional language, JavaScript's native functional capabilities unlock access to proven functional programming techniques and practices.What's insideFoundations of functional programming and designExplore JavaScript's functional programming capabilities and the functional library ecosystemCreate more reliable code by embracing immutabilityLearn to write code that's easier to reason aboutSeparate core logic from program structure to write extensible codeAdopt a new approach to error handling and testingApply functional programming to solve real-world problemsAbout the readerReaders need to be comfortable with JavaScript programming and object-oriented design. No previous experience with functional programming is required.About the authorLuis Atencio is a Staff Software Engineer for Citrix Systems in Ft. Lauderdale, FL. He develops and architects applications leveraging Java, PHP, and JavaScript platforms. Luis is very involved in the community and has presented at local meet-ups. He blogs about software engineering at luisatencio.net and writes articles for PHP magazines and DZone. Follow Luis on twitter at @luijar.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Professional ASP.NET Design Patterns
Scott Millett - 2008
Design patterns are time-tested solutions to recurring problems, letting the designer build programs on solutions that have already proved effective Provides developers with more than a dozen ASP.NET examples showing standard design patterns and how using them helpsbuild a richer understanding of ASP.NET architecture, as well as better ASP.NET applications Builds a solid understanding of ASP.NET architecture that can be used over and over again in many projects Covers ASP.NET code to implement many standard patterns including Model-View-Controller (MVC), ETL, Master-Master Snapshot, Master-Slave-Snapshot, Facade, Singleton, Factory, Single Access Point, Roles, Limited View, observer, page controller, common communication patterns, and more
Exceptional Ruby: Master the Art of Handling Failure in Ruby
Avdi Grimm - 2011
Writing code that handles unexpected errors and still works is really hard. Most of us learn by trial and error. This short book removes the uncertainty. With over 100 pages of content and dozens of working examples, you’ll learn everything from the mechanics of how exceptions work to how to design a robust failure management architecture for your app or library. Whether you are a Ruby novice or a seasoned veteran, Exceptional Ruby will help you write cleaner, more resilient Ruby code.
Probabilistic Graphical Models: Principles and Techniques
Daphne Koller - 2009
The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Professional ASP.NET MVC 3
Jon Galloway - 2011
Book content includes:Getting started with MVC 3, including a rundown of the new project dialog, directory structure and an introduction to NuGet (PowerShell inside Visual Studio 2010)Controllers and Actions View and ViewModelsModels and Databases, including using NuGet to install Entity Framework Code FirstForms and HTML HelpersValidation and Data AnnotationsMembership, Authorization and SecurityAjaxRouting, including routing to Http HandlersNuGet, including using it from the Dialog 'and Package Console, creating a package, custom PowerShell actions and running from both a local repository and the WebDependency InjectionUnit testingExtending ASP.NET MVC with filters and Extensibility pointsWhat's new in MVC 3
Python in a Nutshell
Alex Martelli - 2003
Demonstrates the programming language's strength as a Web development tool, covering syntax, data types, built-ins, the Python standard module library, and real world examples