Can We Talk to God


Ernest Shurtleff Holmes - 1992
    The excessive materialism of the late 20th century has proven an inadequate substitute for God. As we have acquired more things, we have developed an ever-growing emptiness. Even the popular media today are telling us there is a great hunger for the inner peace that comes from prayerful communion with a higher power. "Can We Talk to God?" offers readers a framework for prayer that is compatible with traditional religion, yet moves beyond it in the recognition of a divine presence within each person. This book sets forth the teaching of Ernest Holmes, called Science of Mind, which is a synthesis of the greatest ideas of religion, science and philosophy. Originally published in 1934 as The Ebell Lectures on Spiritual Science, it is as fresh and profound today as it was then, offering readers answers to such important questions as: What is the nature of God? What is our relationship to God? How do we communicate with God? What is the secret of spiritual power? Where is humanity headed? How can a prayer be used to help ourselves and others?Many readers wonder, Can I talk to God? This beautiful book answers with a resounding YES!, and shows readers the way. The method of prayer it teaches will open the door to healthier, happier living.

Computer Science Illuminated


Nell B. Dale - 2002
    Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.

A Brief History of Mathematical Thought: Key concepts and where they come from


Luke Heaton - 2015
    In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story. The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations. In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.

Calculus, Better Explained: A Guide To Developing Lasting Intuition


Kalid Azad - 2015
     Learn the essential concepts using concrete analogies and vivid diagrams, not mechanical definitions. Calculus isn't a set of rules, it's a specific, practical viewpoint we can apply to everyday thinking. Frustrated With Abstract, Mechanical Lessons? I was too. Despite years of classes, I didn't have a strong understanding of calculus concepts. Sure, I could follow mechanical steps, but I had no lasting intuition. The classes I've seen are too long, taught in the wrong order, and without solid visualizations. Here's how this course is different: 1) It gets to the point. A typical class plods along, saving concepts like Integrals until Week 8. I want to see what calculus can offer by Minute 8. Each compact, tightly-written lesson can be read in 15 minutes. 2) Concepts are taught in their natural order. Most classes begin with the theory of limits, a technical concept discovered 150 years after calculus was invented. That's like putting a new driver into a Formula-1 racecar on day 1. We can begin with the easy-to-grasp concepts discovered 2000 years ago. 3) It has vivid analogies and visualizations. Calculus is usually defined as the "study of change"... which sounds like history or geology. Instead of an abstract definition, we'll see calculus a step-by-step viewpoint to explore patterns. 4) It's written by a human, for humans. I'm not a haughty professor or strict schoolmarm. I'm a friend who saw a fun way to internalize some difficult ideas. This course is a chat over coffee, not a keep-your-butt-in-your-seat lecture. The goal is to help you grasp the Aha! moments behind calculus in hours, not a painful semester (or a decade, in my case). Join Thousands Of Happy Readers Here's a few samples of anonymous feedback as people went through the course. The material covers a variety of levels, whether you're looking for intuitive appreciation or the specifics of the rules. "I've done all of this stuff before, and I do understand calculus intuitively, but this was the most fun I've had going through this kind of thing. The informal writing and multitude of great analogies really helps this become an enjoyable read and the rest is simple after that - you make this seem easy, but at the same time, you aren't doing it for us…This is what math education is supposed to be like :)" "I have psychology and medicine background so I relate your ideas to my world. To me the most useful idea was what each circle production feels like. Rings are natural growth…Slices are automatable chunks and automation cheapens production… Boards in the shape on an Arch are psychologically most palatable for work (wind up, hard part, home stretch). Brilliant and kudos, from one INTP to another." "I like how you're introducing both derivatives and integrals at the same time - it's really helps with understanding the relationship between them. Also, I appreciate how you're coming from such a different angle than is traditionally taken - it's always interesting to see where you decide to go next." "That was breathtaking. Seriously, mail my air back please, I've grown used to it. Beautiful work, thank you. Lesson 15 was masterful. I am starting to feel calculus. "d/dx is good" (sorry, couldn't resist!)."

The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time


Jason Socrates Bardi - 2006
    But a dispute over its discovery sowed the seeds of discontent between two of the greatest scientific giants of all time - Sir Isaac Newton and Gottfried Wilhelm Leibniz." "Today Newton and Leibniz are generally considered the twin independent inventors of calculus. They are both credited with giving mathematics its greatest push forward since the time of the Greeks. Had they known each other under different circumstances, they might have been friends. But in their own lifetimes, the joint glory of calculus was not enough for either and each declared war against the other, openly and in secret." This long and bitter dispute has been swept under the carpet by historians - perhaps because it reveals Newton and Leibniz in their worst light - but The Calculus Wars tells the full story in narrative form for the first time. This history ultimately exposes how these twin mathematical giants were brilliant, proud, at times mad, and in the end completely human.

Wheelbarrow Profits: How To Create Passive Income, Build Wealth, And Take Control Of Your Destiny Through Multifamily Real Estate Investing


Jake Stenziano - 2015
    The Wheelbarrow Profits system for real estate investment takes advantage of an under appreciated source of wealth in the United States: multifamily properties. Learn how to identify your own niche, study your market, build your portfolio, and manage properties to successfully turn your investment into true wealth. Written and created by Jake Stenziano and Gino Barbaro, Wheelbarrow Profits is the tried and true system that they’ve utilized to grow a single multifamily investment into nearly a dozen successful and lucrative properties. Whether you’re a seasoned professional looking to explore a different type of investment strategy or a new investor looking to start building your portfolio, Jake and Gino’s system will provide you with the step-by-step guide you need to secure your financial independence.

Algebra - The Very Basics


Metin Bektas - 2014
    This book picks you up at the very beginning and guides you through the foundations of algebra using lots of examples and no-nonsense explanations. Each chapter contains well-chosen exercises as well as all the solutions. No prior knowledge is required. Topics include: Exponents, Brackets, Linear Equations and Quadratic Equations. For a more detailed table of contents, use the "Look Inside" feature. From the author of "Great Formulas Explained" and "Physics! In Quantities and Examples".

The Art of the Infinite: The Pleasures of Mathematics


Robert M. Kaplan - 1980
    The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.

Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving


Sanjoy Mahajan - 2010
    Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics


James D. Stein - 2008
    In the four main sections of the book, Stein tells the stories of the mathematical thinkers who discerned some of the most fundamental aspects of our universe. From their successes and failures, delusions, and even duels, the trajectories of their innovations—and their impact on society—are traced in this fascinating narrative. Quantum mechanics, space-time, chaos theory and the workings of complex systems, and the impossibility of a "perfect" democracy are all here. Stein's book is both mind-bending and practical, as he explains the best way for a salesman to plan a trip, examines why any thought you could have is imbedded in the number π , and—perhaps most importantly—answers one of the modern world's toughest questions: why the garage can never get your car repaired on time.Friendly, entertaining, and fun, How Math Explains the World is the first book by one of California's most popular math teachers, a veteran of both "math for poets" and Princeton's Institute for Advanced Studies. And it's perfect for any reader wanting to know how math makes both science and the world tick.

All the Mathematics You Missed


Thomas A. Garrity - 2001
    This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.

Using Econometrics: A Practical Guide


A.H. Studenmund - 1987
    "Using Econometrics: A Practical Guide "provides readers with a practical introduction that combines single-equation linear regression analysis with real-world examples and exercises. This text also avoids complex matrix algebra and calculus, making it an ideal text for beginners. New problem sets and added support make "Using Econometrics" modern and easier to use.

Mathematics and the Imagination


Edward Kasner - 1940
    But your pleasure and prowess at games, gambling, and other numerically related pursuits can be heightened with this entertaining volume, in which the authors offer a fascinating view of some of the lesser-known and more imaginative aspects of mathematics.A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.

The Little Book of Mathematical Principles, Theories, & Things


Robert Solomon - 2008
    Rare Book

Electrical Measurements And Measuring Instruments


R.K. Rajput - 2010