Gödel's Theorem: An Incomplete Guide to Its Use and Abuse


Torkel Franzén - 2005
    With exceptional clarity, Franz n gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of "Logical Dilemmas: The Life and Work of Kurt G del

A Short Account of the History of Mathematics


W.W. Rouse Ball - 1900
    From the early Greek influences to the Middle Ages and the Renaissance to the end of the 19th century, trace the fascinating foundation of mathematics as it developed through the ages. Aristotle, Galileo, Kepler, Newton: you know the names. Now here's what they really did, and the effect their discoveries had on our culture, all explained in a way the layperson can understand. Begin with the basis of arithmetic (Plato and the introduction of geometry), and discover why the use of Arabic numerals was critical to the development of both commerce and science. The development of calculus made space travel a reality, while the abacus prefigured the computer. The greats examined in depth include Leonardo da Vinci, a brilliant mathematician as well as artist; Pascal, who laid out the theory of probabilities; and Fermat, whose intriguing theory has only recently been solved.

Euclid in the Rainforest: Discovering Universal Truth in Logic and Math


Joseph Mazur - 2004
    Underpinning both math and science, it is the foundation of every major advancement in knowledge since the time of the ancient Greeks. Through adventure stories and historical narratives populated with a rich and quirky cast of characters, Mazur artfully reveals the less-than-airtight nature of logic and the muddled relationship between math and the real world. Ultimately, Mazur argues, logical reasoning is not purely robotic. At its most basic level, it is a creative process guided by our intuitions and beliefs about the world.

Q.E.D.: Beauty in Mathematical Proof


Burkard Polster - 2004
    presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.

Linear Algebra and Its Applications [with CD-ROM]


David C. Lay - 1993
    

Quantum Computation and Quantum Information


Michael A. Nielsen - 2000
    A wealth of accompanying figures and exercises illustrate and develop the material in more depth. They describe what a quantum computer is, how it can be used to solve problems faster than familiar "classical" computers, and the real-world implementation of quantum computers. Their book concludes with an explanation of how quantum states can be used to perform remarkable feats of communication, and of how it is possible to protect quantum states against the effects of noise.

The Colossal Book of Mathematics


Martin Gardner - 2001
    Gardner's array of absorbing puzzles and mind-twisting paradoxes opens mathematics up to the world at large, inspiring people to see past numbers and formulas and experience the application of mathematical principles to the mysterious world around them. With articles on topics ranging from simple algebra to the twisting surfaces of Mobius strips, from an endless game of Bulgarian solitaire to the unreachable dream of time travel, this volume comprises a substantial and definitive monument to Gardner's influence on mathematics, science, and culture.In its twelve sections, The Colossal Book of Math explores a wide range of areas, each startlingly illuminated by Gardner's incisive expertise. Beginning with seemingly simple topics, Gardner expertly guides us through complicated and wondrous worlds: by way of basic algebra we contemplate the mesmerizing, often hilarious, linguistic and numerical possibilities of palindromes; using simple geometry, he dissects the principles of symmetry upon which the renowned mathematical artist M. C. Escher constructs his unique, dizzying universe. Gardner, like few thinkers today, melds a rigorous scientific skepticism with a profound artistic and imaginative impulse. His stunning exploration of "The Church of the Fourth Dimension," for example, bridges the disparate worlds of religion and science by brilliantly imagining the spatial possibility of God's presence in the world as a fourth dimension, at once "everywhere and nowhere."With boundless wisdom and his trademark wit, Gardner allows the reader to further engage challenging topics like probability and game theory which have plagued clever gamblers, and famous mathematicians, for centuries. Whether debunking Pascal's wager with basic probability, making visual music with fractals, or uncoiling a "knotted doughnut" with introductory topology, Gardner continuously displays his fierce intelligence and gentle humor. His articles confront both the comfortingly mundane—"Generalized Ticktacktoe" and "Sprouts and Brussel Sprouts"—and the quakingly abstract—"Hexaflexagons," "Nothing," and "Everything." He navigates these staggeringly obscure topics with a deft intelligence and, with addendums and suggested reading lists, he informs these classic articles with new insight.Admired by scientists and mathematicians, writers and readers alike, Gardner's vast knowledge and burning curiosity reveal themselves on every page. The culmination of a lifelong devotion to the wonders of mathematics, The Colossal Book of Mathematics is the largest and most comprehensive math book ever assembled by Gardner and remains an indispensable volume for the amateur and expert alike.

Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

Burn Math Class: And Reinvent Mathematics for Yourself


Jason Wilkes - 2016
    In Burn Math Class, Jason Wilkes takes the traditional approach to how we learn math -- with its unwelcoming textbooks, unexplained rules, and authoritarian assertions-and sets it on fire. Focusing on how mathematics is created rather than on mathematical facts, Wilkes teaches the subject in a way that requires no memorization and no prior knowledge beyond addition and multiplication. From these simple foundations, Burn Math Class shows how mathematics can be (re)invented from scratch without preexisting textbooks and courses. We can discover math on our own through experimentation and failure, without appealing to any outside authority. When math is created free from arcane notations and pretentious jargon that hide the simplicity of mathematical concepts, it can be understood organically -- and it becomes fun! Following this unconventional approach, Burn Math Class leads the reader from the basics of elementary arithmetic to various "advanced" topics, such as time-dilation in special relativity, Taylor series, and calculus in infinite-dimensional spaces. Along the way, Wilkes argues that orthodox mathematics education has been teaching the subject backward: calculus belongs before many of its so-called prerequisites, and those prerequisites cannot be fully understood without calculus. Like the smartest, craziest teacher you've ever had, Wilkes guides you on an adventure in mathematical creation that will radically change the way you think about math. Revealing the beauty and simplicity of this timeless subject, Burn Math Class turns everything that seems difficult about mathematics upside down and sideways until you understand just how easy math can be.

A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

A First Course in Abstract Algebra


John B. Fraleigh - 1967
    Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.

I Want to Be a Mathematician: An Automathography


Paul R. Halmos - 1985
    The main message i absorbed from it was a set of conditions required for success in mathematics: talent, yes; single-mindedness, almost as obvious; sense of humour, essential when the going gets tough; and love, yes that is the right word - you must love mathematics, and that means all the ingredients, passion, pain and loyalty." The Mathematical Gazette#1"The book is written in a very personal, but plain and honest way, result of reflected experience and mature self-assessment of a wise man. It avoids palliation as well as exaggerated modesty.- It should be a document for history and sociology of science." (R. Fischer) Zentralblatt für Mathematik#2

Mathematics: From the Birth of Numbers


Jan Gullberg - 1997
    The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, "for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge," it links mathematics to the humanities, linguistics, the natural sciences, and technology.Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous asides, ranging from limericks and tall stories to cartoons and decorative drawings.

The Calculus Story: A Mathematical Adventure


David Acheson - 2017
    It is the mathematical method for the analysis of things that change, and since in the natural world we are surrounded by change, the development of calculus was a huge breakthrough in the history of mathematics. But it is also something of a mathematical adventure, largely because of the way infinity enters at virtually every twist and turn...In The Calculus Story David Acheson presents a wide-ranging picture of calculus and its applications, from ancient Greece right up to the present day. Drawing on their original writings, he introduces the people who helped to build our understanding of calculus. With a step by step treatment, he demonstrates how to start doing calculus, from the very beginning.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.