Book picks similar to
Math for the Frightened: Facing Scary Symbols and Everything Else That Freaks You Out About Mathematics by Colin Pask
math
nonfiction
science-philosophy
private
The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory
Brian Greene - 1999
Brian Greene, one of the world's leading string theorists, peels away the layers of mystery surrounding string theory to reveal a universe that consists of eleven dimensions, where the fabric of space tears and repairs itself, and all matter—from the smallest quarks to the most gargantuan supernovas—is generated by the vibrations of microscopically tiny loops of energy.Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory, as it is often called, is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small-General Relativity and Quantum Theory-is resolved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom. In this brilliantly articulated and refreshingly clear book, Greene relates the scientific story and the human struggle behind twentieth-century physics' search for a theory of everything.Through the masterful use of metaphor and analogy, The Elegant Universe makes some of the most sophisticated concepts ever contemplated viscerally accessible and thoroughly entertaining, bringing us closer than ever to understanding how the universe works.
Everything and More: A Compact History of Infinity
David Foster Wallace - 2003
Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.
Introduction to Topology
Bert Mendelson - 1975
It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.
The (Mis)Behavior of Markets
Benoît B. Mandelbrot - 1997
Mandelbrot, one of the century's most influential mathematicians, is world-famous for making mathematical sense of a fact everybody knows but that geometers from Euclid on down had never assimilated: Clouds are not round, mountains are not cones, coastlines are not smooth. To these classic lines we can now add another example: Markets are not the safe bet your broker may claim. In his first book for a general audience, Mandelbrot, with co-author Richard L. Hudson, shows how the dominant way of thinking about the behavior of markets-a set of mathematical assumptions a century old and still learned by every MBA and financier in the world-simply does not work. As he did for the physical world in his classic The Fractal Geometry of Nature, Mandelbrot here uses fractal geometry to propose a new, more accurate way of describing market behavior. The complex gyrations of IBM's stock price and the dollar-euro exchange rate can now be reduced to straightforward formulae that yield a far better model of how risky they are. With his fractal tools, Mandelbrot has gotten to the bottom of how financial markets really work, and in doing so, he describes the volatile, dangerous (and strangely beautiful) properties that financial experts have never before accounted for. The result is no less than the foundation for a new science of finance.
A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science
Michael S. Schneider - 1994
This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.
Asimov on Numbers
Isaac Asimov - 1978
From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.
The Manga Guide to Calculus
Hiroyuki Kojima - 2005
She wants to cover the hard-hitting issues, like world affairs and politics, but does she have the smarts for it? Thankfully, her overbearing and math-minded boss, Mr. Seki, is here to teach her how to analyze her stories with a mathematical eye.In The Manga Guide to Calculus, you'll follow along with Noriko as she learns that calculus is more than just a class designed to weed out would-be science majors. You'll see that calculus is a useful way to understand the patterns in physics, economics, and the world around us, with help from real-world examples like probability, supply and demand curves, the economics of pollution, and the density of Shochu (a Japanese liquor).Mr. Seki teaches Noriko how to:Use differentiation to understand a function's rate of change Apply the fundamental theorem of calculus, and grasp the relationship between a function's derivative and its integral Integrate and differentiate trigonometric and other complicated functions Use multivariate calculus and partial differentiation to deal with tricky functions Use Taylor Expansions to accurately imitate difficult functions with polynomials Whether you're struggling through a calculus course for the first time or you just need a painless refresher, you'll find what you're looking for in The Manga Guide to Calculus.This EduManga book is a translation from a bestselling series in Japan, co-published with Ohmsha, Ltd. of Tokyo, Japan.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Ruler and Compass: Practical Geometric Constructions
Andrew Sutton - 2009
Originally marked out by eye and later by use of a stretched cord, in time these forms came to be made with the simple tools of ruler and compass.This small book introduces the origins and basic principles of geometric constructions using these ancient tools, before going on to cover dozens of geometric forms, from practical fundamentals to more challenging constructions.
Problems in Mathematics with Hints and Solutions
V. Govorov - 1996
Theory has been provided in points between each chapter for clarifying relevant basic concepts. The book consist four parts algebra and trigonometry, fundamentals of analysis, geometry and vector algebra and the problems and questions set during oral examinations. Each chapter consist topic wise problems. Sample examples are provided after each text for understanding the topic well. The fourth part "oral examination problems and question" includes samples suggested by the higher schools for the help of students. Answers and hints are given at the end of the book for understanding the concept well. About the Book: Problems in Mathematics with Hints and Solutions Contents: Preface Part 1. Algebra, Trigonometry and Elementary Functions Problems on Integers. Criteria for Divisibility Real Number, Transformation of Algebraic Expressions Mathematical Induction. Elements of Combinatorics. BinomialTheorem Equations and Inequalities of the First and the SecondDegree Equations of Higher Degrees, Rational Inequalities Irrational Equations and Inequalities Systems of Equations and Inequalities The Domain of Definition and the Range of a Function Exponential and Logarithmic Equations and Inequalities Transformations of Trigonometric Expressions. InverseTrigonometric Functions Solutions of Trigonometric Equations, Inequalities and Systemsof Equations Progressions Solutions of Problems on Derivation of Equations Complex Numbers Part 2. Fundamentals of Mathematical Analysis Sequences and Their Limits. An Infinitely Decreasing GeometricProgression. Limits of Functions The Derivative. Investigating the Behaviors of Functions withthe Aid of the Derivative Graphs of Functions The Antiderivative. The Integral. The Area of a CurvilinearTrapezoid Part 3. Geometry and Vector Algebra Vector Algebra Plane Geometry. Problems on Proof Plane Geometry. Construction Problems Plane Geometry. C
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
John Derbyshire - 2003
Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world.
The World Treasury of Physics, Astronomy & Mathematics from Albert Einstein to Stephen W. Hawking & from Annie Dillard to John Updike
Timothy Ferris - 1991
Each expresses a perspective on the Sciences.
The Disappearing Spoon: And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements
Sam Kean - 2010
The fascinating tales in The Disappearing Spoon follow carbon, neon, silicon, gold and every single element on the table as they play out their parts in human history, finance, mythology, conflict, the arts, medicine and the lives of the (frequently) mad scientists who discovered them.Why did a little lithium (Li, 3) help cure poet Robert Lowell of his madness? And how did gallium (Ga, 31) become the go-to element for laboratory pranksters? The Disappearing Spoon has the answers, fusing science with the classic lore of invention, investigation, discovery and alchemy, from the big bang through to the end of time.
Prealgebra
Richard Rusczyk - 2011
Topics covered in the book include the properties of arithmetic, exponents, primes and divisors, fractions, equations and inequalities, decimals, ratios and proportions, unit conversions and rates, percents, square roots, basic geometry (angles, perimeter, area, triangles, and quadrilaterals), statistics, counting and probability, and more! The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, giving the student a chance to solve them without help before proceeding. The text then includes solutions to these problems, through which algebraic techniques are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains well over 1000 problems. The solutions manual (sold separately) contains full solutions to all of the problems, not just answers. This book can serve as a complete Prealgebra course. This text is supplemented by free videos and a free learning system at the publisher's website.