Problem Solving with Algorithms and Data Structures Using Python


Bradley N. Miller - 2005
    It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists


Philipp K. Janert - 2010
    With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

Artificial Intelligence


Patrick Henry Winston - 1977
    From the book, you learn why the field is important, both as a branch of engineering and as a science. If you are a computer scientist or an engineer, you will enjoy the book, because it provides a cornucopia of new ideas for representing knowledge, using knowledge, and building practical systems. If you are a psychologist, biologist, linguist, or philosopher, you will enjoy the book because it provides an exciting computational perspective on the mystery of intelligence. The Knowledge You Need This completely rewritten and updated edition of Artificial Intelligence reflects the revolutionary progress made since the previous edition was published. Part I is about representing knowledge and about reasoning methods that make use of knowledge. The material covered includes the semantic-net family of representations, describe and match, generate and test, means-ends analysis, problem reduction, basic search, optimal search, adversarial search, rule chaining, the rete algorithm, frame inheritance, topological sorting, constraint propagation, logic, truth

Programming Game AI by Example


Mat Buckland - 2004
    Techniques covered include state- and goal-based behavior, inter-agent communication, individual and group steering behaviors, team AI, graph theory, search, path planning and optimization, triggers, scripting, scripted finite state machines, perceptual modeling, goal evaluation, goal arbitration, and fuzzy logic.

Introduction to Data Mining


Vipin Kumar - 2005
    Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.

A Brief History of Artificial Intelligence: What It Is, Where We Are, and Where We Are Going


Michael Wooldridge - 2021
    As an AI researcher with 25 years of experience, professor Mike Wooldridge has learned to be obsessively cautious about such claims, while still promoting an intense optimism about the future of the field. There have been genuine scientific breakthroughs that have made AI systems possible in the past decade that the founders of the field would have hailed as miraculous. Driverless cars and automated translation tools are just two examples of AI technologies that have become a practical, everyday reality in the past few years, and which will have a huge impact on our world.While the dream of conscious machines remains, Professor Wooldridge believes, a distant prospect, the floodgates for AI have opened. Wooldridge's A Brief History of Artificial Intelligence is an exciting romp through the history of this groundbreaking field--a one-stop-shop for AI's past, present, and world-changing future.

Ancestral Night


Elizabeth Bear - 2019
    Haimey and her small crew run afoul of pirates at the outer limits of the Milky Way, and find themselves on the run and in possession of universe-changing information.When authorities prove corrupt, Haimey realizes that she is the only one who can protect her galaxy-spanning civilization from the implications of this ancient technology—and the revolutionaries who want to use it for terror and war. Her quest will take her careening from the event horizon of the supermassive black hole at the galaxy’s core to the infinite, empty spaces at its edge.To save everything that matters, she will need to uncover the secrets of ancient intelligences lost to time—and her own lost secrets, which she will wish had remained hidden from her forever.

Understanding Computers and Cognition: A New Foundation for Design


Terry Winograd - 1986
    This volume is a theoretical and practical approach to the design of computer technology.

Time Series Analysis


James Douglas Hamilton - 1994
    This book synthesizes these recent advances and makes them accessible to first-year graduate students. James Hamilton provides the first adequate text-book treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems (including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter) in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results.The book is intended to provide students and researchers with a self-contained survey of time series analysis. It starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.-- "Journal of Economics"

Forecasting: Principles and Practice


Rob J. Hyndman - 2013
    Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

Flask Web Development: Developing Web Applications with Python


Miguel Grinberg - 2014
    With this hands-on book, you’ll learn Flask from the ground up by developing a complete social blogging application step-by-step. Author Miguel Grinberg walks you through the framework’s core functionality, and shows you how to extend applications with advanced web techniques such as database migration and web service communication.Rather than impose development guidelines as other frameworks do, Flask leaves the business of extensions up to you. If you have Python experience, this book shows you how to take advantage of that creative freedom.- Learn Flask’s basic application structure and write an example app- Work with must-have components—templates, databases, web forms, and email support- Use packages and modules to structure a large application that scales- Implement user authentication, roles, and profiles- Build a blogging feature by reusing templates, paginating item lists, and working with rich text- Use a Flask-based RESTful API to expose app functionality to smartphones, tablets, and other third-party clients- Learn how to run unit tests and enhance application performance- Explore options for deploying your web app to a production server

Computer Vision: Algorithms and Applications


Richard Szeliski - 2010
    However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art?Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.More than just a source of "recipes," this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniquesTopics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory Suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book Supplies supplementary course material for students at the associated website, http: //szeliski.org/Book/ Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

The Future of Leadership: Rise of Automation, Robotics and Artificial Intelligence


Brigette Tasha Hyacinth - 2017
    If we don't candidly answer the pertinent questions, we will only paint a false picture.We are standing at a crucial and pivotal point in history. It's time for diversity in AI. This unprecedented technology will affect society as a whole and we need individuals from diverse disciplines and backgrounds to join the discussion. The issues surrounding AI can't be left to a small group of scientists, technologists or business executives to address. Our future and our children's future are at stake.More than ever, we need leaders who will stand on integrity and who will put people first.Do you want to take a glimpse into the future of leadership? The Future of Leadership: Rise of Automation, Robotics and Artificial Intelligence offers the most comprehensive view of what is taking place in the world of AI and emerging technologies, and gives valuable insights that will allow you to successfully navigate the tsunami of technology that is coming our way.

Autonomous


Annalee Newitz - 2017
    A notorious anti-patent scientist who has styled herself as a Robin Hood heroine fighting to bring cheap drugs to the poor, Jack’s latest drug is leaving a trail of lethal overdoses across what used to be North America—a drug that compels people to become addicted to their work.On Jack’s trail are an unlikely pair: an emotionally shut-down military agent and his partner, Paladin, a young military robot, who fall in love against all expectations. Autonomous alternates between the activities of Jack and her co-conspirators, and Elias and Paladin, as they all race to stop a bizarre drug epidemic that is tearing apart lives, causing trains to crash, and flooding New York City.