Book picks similar to
Artificial Intelligence in the 21st Century by Danny Kopec


computer-science
machine-learning
artificial-intelligence
0_triage

A Concise Introduction to Logic [with CD-ROM]


Patrick J. Hurley - 1972
    Inside: Logic Resource CD-ROM

Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.

Computer Systems: A Programmer's Perspective


Randal E. Bryant - 2002
    Often, computer science and computer engineering curricula don't provide students with a concentrated and consistent introduction to the fundamental concepts that underlie all computer systems. Traditional computer organization and logic design courses cover some of this material, but they focus largely on hardware design. They provide students with little or no understanding of how important software components operate, how application programs use systems, or how system attributes affect the performance and correctness of application programs. - A more complete view of systems - Takes a broader view of systems than traditional computer organization books, covering aspects of computer design, operating systems, compilers, and networking, provides students with the understanding of how programs run on real systems. - Systems presented from a programmers perspective - Material is presented in such a way that it has clear benefit to application programmers, students learn how to use this knowledge to improve program performance and reliability. They also become more effective in program debugging, because t

Introducing Physical Geography


Arthur N. Strahler - 1970
    Includes all new multimedia and pedagogy to bring physical geography to a new audience. The new fourth edition of Introducing Physical Geography, focuses on both content and pedagogy. The text also includes current examples of environmental phenomena, such as Hurricane Isabel and the recent earthquakes in Turkey. The readability of the text has been enhanced with new placements of boxed features and supplementary material.

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

Family Nurse Practitioner Certification Intensive Review: Fast Facts and Practice Questions


Maria T. Codina Leik - 2007
    Using test-taking strategies meticulously developed by the author, the Review provides unique question dissection techniques, targeted key content review, 600 in-depth practice questions, and detailed, current exam information in a fast facts style. This second edition includes new chapters on pediatrics and adolescence and an extensive new section on geriatrics that encompasses body/metabolic changes, common disorders, and hospice/ethical considerations. The book also presents an expanded, intensive pharmacology review, 100 new exam questions, and is the only review to offer a new research chapter providing elements of research needed for E-B practice.The book reviews the complete lifespan from pediatrics to geriatrics and including pregnancy, and covers non-clinical content including ethics, medico-legal issues, advanced practice law, and reimbursement guidelines. The review of primary care disorders is organized by body system. The content is applicable for certification exams for both the ANCC and the AANP. This book is also a great companion to the FNP Certification Review app, coming soon for your iPhone or iPad!New to this edition: Reorganized for greater ease of useProvides extensive new section on geriatricsContains expanded coverage of pediatrics and adolescenceOffers expanded intensive-style pharmacology reviewPresents elements of research needed for E-B practiceIncludes 100 new questions for a title of 600 high-yield questionsWhy use this review?Delineates strategic question dissection techniques for study success developed by the author, a leading provider of exam preparation education for over 20 yearsProvides precisely targeted content reviewOffers 600 in-depth practice questions and detailed exam informationIncludes Exam Tips and Clinical Tips to help prioritize test content.It is the only book to present elements of research needed for E-B practiceOutlines normal findings and benign variants in physical assessment of each body systemIncludes succinct review of diseases commonly seen in primary careIt's a great companion to the forthcoming FNP Certification Review app!

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Emergence: The Connected Lives of Ants, Brains, Cities, and Software


Steven Johnson - 2001
    Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web? In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.

Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements


John R. Taylor - 1982
    It is designed as a reference for students in the physical sciences and engineering.

How Would You Move Mount Fuji? Microsoft's Cult of the Puzzle--How the World's Smartest Companies Select the Most Creative Thinkers


William Poundstone - 2003
    For the first time, William Poundstone reveals the toughest questions used at Microsoft and other Fortune 500 companies -- and supplies the answers. He traces the rise and controversial fall of employer-mandated IQ tests, the peculiar obsessions of Bill Gates (who plays jigsaw puzzles as a competitive sport), the sadistic mind games of Wall Street (which reportedly led one job seeker to smash a forty-third-story window), and the bizarre excesses of today's hiring managers (who may start off your interview with a box of Legos or a game of virtual Russian roulette). How Would You Move Mount Fuji? is an indispensable book for anyone in business. Managers seeking the most talented employees will learn to incorporate puzzle interviews in their search for the top candidates. Job seekers will discover how to tackle even the most brain-busting questions, and gain the advantage that could win the job of a lifetime. And anyone who has ever dreamed of going up against the best minds in business may discover that these puzzles are simply a lot of fun. Why are beer cans tapered on the end, anyway?

Bayesian Data Analysis


Andrew Gelman - 1995
    Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

Hands-On Programming with R: Write Your Own Functions and Simulations


Garrett Grolemund - 2014
    With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools.RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time.Work hands-on with three practical data analysis projects based on casino gamesStore, retrieve, and change data values in your computer's memoryWrite programs and simulations that outperform those written by typical R usersUse R programming tools such as if else statements, for loops, and S3 classesLearn how to write lightning-fast vectorized R codeTake advantage of R's package system and debugging toolsPractice and apply R programming concepts as you learn them

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

How to Think Like a Mathematician


Kevin Houston - 2009
    Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

Make Your Own Neural Network: An In-depth Visual Introduction For Beginners


Michael Taylor - 2017
    A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.