History of Astronomy


George Forbes - 1909
    Purchasers are entitled to a free trial membership in the General Books Club where they can select from more than a million books without charge. Subjects: Astronomy; History / General; Juvenile Nonfiction / Science

E=MC2: Simple Physics: Why Balloons Rise, Apples Fall & Golf BallsGo Awry


Jeff Stewart - 2010
    With amusing examples from film, TV, and history, learn how physics affects everything in your surroundings--without the use of mind-bending math or the need for a particle accelerator. With E=MC2, you'll learn: When forces balance: Simple answers to questions such as, "Why do balloons rise while apples fall?" The Good, the Bad, and the Impossible: Why The Good, the Bad, and the Ugly is full of absurdities. (For someone whose characters often uphold the law, Clint Eastwood certainly defies the laws of physics in this film.) AC/DC: but only AC really rocks: Alternating current (AC) is much more complicated than direct current (DC). The voltage is constantly moving between positive and negative; the current therefore flows one way, and then the other (rocking back and forth). Why do I feel this warm glow?: The theory behind how the first stars were born General Relativity and GPS: The strange result of gravity on time is well proven. Compared to the interminable time you experience while stuck in a traffic jam, time literally runs faster (because gravity is weaker) in the orbiting GPS satellites that help your GPS system get its fix. At the speed of light: A refresher on the theory of relativity and an understanding of why--a hundred years later--Einstein's physics still points the way in cutting-edge research. Yu again: In the martial arts movie Crouching Tiger, Hidden Dragon, the rebellious young heroine, Jen Yu, blocks an attacker with her hand without standing or bracing herself. All the while, she holds a cup of tea in her other hand and doesn't spill a drop. Find out why kinetic energy and scalar quantity make her move impossible. It's physics for the rest of us. So why not come along for the ride? Advance at the speed of light through the fundamental laws of physics as they were discovered, proven wrong, and revolutionized. Make this and all of the Blackboard Books(tm) a permanent fixture on your shelf, and you'll have instant access to a breadth of knowledge. Whether you need homework help or want to win that trivia game, this series is the trusted source for fun facts.

Physics Essentials for Dummies


Steven Holzner - 2010
    Free of ramp-up and ancillary material, Physics Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in an introductory physics course, from force and motion to momentum and kinetics. This guide is also a perfect reference for parents who need to review critical physics concepts as they help high school students with homework assignments, as well as for adult learners headed back to the classroom who just need a refresher of the core concepts. The Essentials For Dummies SeriesDummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Basic Engineering Circuit Analysis


J. David Irwin - 1984
    Now in a new Ninth Edition, this reader-friendly book has been completely revised and improved to ensure that the learning experience is enhanced. It's built on the strength of Irwin's problem-solving methodology, providing readers with a strong foundation as they advance in the field.

Basic Physics: A Self-Teaching Guide


Karl F. Kuhn - 1996
    Even ifyou don't consider yourself a "science" person, this book helpsmake learning key concepts a pleasure, not a chore. Whether youneed help in a course, want to review the basics for an exam, orsimply have always been curious about such physical phenomena asenergy, sound, electricity, light, and color, you've come to theright place! This fully up-to-date edition of Basic Physics: * Has been tested, rewritten, and retested to ensure that you canteach yourself all about physics * Requires no math--mathematical treatments and applications areincluded in optional sections so that you can choose either amathematical or nonmathematical approach * Lets you work at your own pace with a helpful question-and-answerformat * Lists objectives for each chapter--you can skip ahead or findextra help if you need it * Reinforces what you learn with end-of-chapter self-tests

University Physics with Modern Physics


Hugh D. Young - 1949
    Offering time-tested problems, conceptual and visual pedagogy, and a state-of-the-art media package, this 11th edition looks to the future of university physics, in terms of both content and approach.

The Quantum Zoo: A Tourist's Guide to the Neverending Universe


Marcus Chown - 2006
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realize that 1 per cent of the static on a TV tuned between stations is the relic of the Big Bang? These and many other remarkable facts about the world are direct consequences of quantum physics and relativity. Quantum theory has literally made the modern world possible. Not only has it given us lasers, computers, and nuclear reactors, but it has provided an explanation of why the sun shines and why the ground beneath our feet is solid. Despite this, however, quantum theory and relativity remain a patchwork of fragmented ideas, vaguely understood at best and often utterly mysterious. average person. Author Marcus Chown emphatically disagrees. As Einstein himself said, Most of the fundamental ideas of science are essentially simple and may, as a rule, be expressed in a language comprehensible to everyone. If you think that the marvels of modern physics have passed you by, it is not too late. In Chown's capable hands, quantum physics and relativity are not only painless but downright fun. So sit back, relax, and get comfortable as an adept and experienced science communicator brings you quickly up to speed on some of the greatest ideas in the history of human thought.

Introduction to Fluid Mechanics [With CDROM]


Robert W. Fox - 2003
    This new edition simplifies many of the steps involved in analysis by using the computer application Excel. Over 100 detailed example problems illustrate important fluid mechanics concepts: Approximately 1300 end-of-chapter problems are arranged by difficulty level and include many problems that are designed to be solved using Excel. The CD for the book includes: A Brief Review of Microsoft Excel and numerous Excel files for the example problems and for use in solving problems. The new edition includes an expanded discussion of pipe networks, and a new section on oblique shocks and expansion waves.

The End of Time: The Next Revolution in Our Understanding of the Universe


Julian Barbour - 1999
    Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless `nows'. In The End of Time, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity - which denies the existence of a unique time - and quantum mechanics - which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. The End of Time is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.

Cosmic Numbers: The Numbers That Define Our Universe


James D. Stein - 2011
    We start counting our fingers and toes and end up balancing checkbooks and calculating risk. So powerful is the appeal of numbers that many people ascribe to them a mystical significance. Other numbers go beyond the supernatural, working to explain our universe and how it behaves. In Cosmic Numbers, mathematics professor James D. Stein traces the discovery, evolution, and interrelationships of the numbers that define our world. Everyone knows about the speed of light and absolute zero, but numbers like Boltzmann’s constant and the Chandrasekhar limit are not as well known, and they do far more than one might imagine: They tell us how this world began and what the future holds. Much more than a gee-whiz collection of facts and figures, Cosmic Numbers illuminates why particular numbers are so important—both to the scientist and to the rest of us.

Cycles of Time: An Extraordinary New View of the Universe


Roger Penrose - 2010
    Roger Penrose—one of the most innovative mathematicians of our time—turns around this predominant picture of the universe’s “heat death,” arguing how the expected ultimate fate of our accelerating, expanding universe can actually be reinterpreted as the “Big Bang” of a new one.Along the way to this remarkable cosmological picture, Penrose sheds new light on basic principles that underlie the behavior of our universe, describing various standard and nonstandard cosmological models, the fundamental role of the cosmic microwave background, and the key status of black holes. Ideal for both the amateur astronomer and the advanced physicist—with plenty of exciting insights for each—Cycles of Time is certain to provoke and challenge.Intellectually thrilling and accessible, this is another essential guide to the universe from one of our preeminent thinkers.

Atomic America: How a Deadly Explosion and a Feared Admiral Changed the Course of Nuclear History


Todd Tucker - 2009
    The army blamed “human error†and a sordid love triangle. Though overshadowed by Three Mile Island, SL-1 remains the only fatal nuclear reactor incident in American history. Todd Tucker, who first heard the rumors about the Idaho Falls explosion as a trainee in the navy’s nuclear program, suspected there was more to the accident than rumors suggested. Poring over hundreds of pages of primary sources and interviewing survivors revealed that the army and its contractors had deliberately obscured the true cause of the accident, which resulted from poor engineering as much as uncontrolled passions. The National Reactor Testing Station, where the meltdown occurred, had been a proving ground where engineers, generals, and admirals attempted to realize the Atomic Age dream of unlimited power—amid the frantic race for nuclear power between the army, the navy, and the air force. The fruit of those ambitious plans included that of the nation’s unofficial nuclear patriarch, Admiral Rickover, whose “true submarine,†the USS Nautilus, would forever change naval warfare. But with the meltdown in Idaho came the end of the army’s program and the beginning of the navy’s long-standing monopoly on military nuclear power. Atomic America provides a fast-paced narrative history, advocating caution and accountability in harnessing nuclear energy.

The Los Alamos Primer: The First Lectures on How To Build an Atomic Bomb


Robert Serber - 1992
    The lecturer was Robert Serber, J. Robert Oppenheimer's protégé, and they learned that their job was to invent the world's first atomic bomb.Serber's lecture notes, nicknamed the "Los Alamos Primer," were mimeographed and passed from hand to hand, remaining classified for many years. They are published here for the first time, and now contemporary readers can see just how much was known and how terrifyingly much was unknown when the Manhattan Project began. Could this "gadget," based on the newly discovered principles of nuclear fission, really be designed and built? Could it be small enough and light enough for an airplane to carry? If it could be built, could it be controlled?Working with Richard Rhodes, Pulitzer Prize-winning historian of the development of the atomic bomb, Professor Serber has annotated original lecture notes with explanations of the physics terms for the nonspecialist. His preface, an informal memoir, vividly conveys the mingled excitement, uncertainty, and intensity felt by the Manhattan Project scientists. Rhodes's introduction provides a brief history of the development of atomic physics up to the day that Serber stood before his blackboard at Los Alamos. In this edition, The Los Alamos Primer finally emerges from the archives to give a new understanding of the very beginning of nuclear weapons. No seminar anywhere has had greater historical consequences.

How to Love the Universe: A Scientist’s Odes to the Hidden Beauty Behind the Visible World


Stefan Klein - 2018
    In ten short chapters of lyrical prose—each one an ode to a breathtaking realm of discovery—Stefan Klein uses everyday objects and events as a springboard to meditate on the beauty of the underlying science. Klein sees in a single rose the sublime interdependence of all life; a day of stormy weather points to the world’s unpredictability; a marble conjures the birth of the cosmos. As he contemplates the deepest mysteries—the nature of reality, dark matter, humanity’s place among the galaxies, and more—Klein encourages us to fall in love with the universe the way scientists do: with a grasp of the key ideas and theories of twenty-first-century physics that bring to life the wonders of, really, everything. You won’t look at a rose—or at our world—the same way again.

The Little Book of Cosmology


Lyman Page - 2020
    Written by one of the world's leading experimental cosmologists, this short but deeply insightful book describes what scientists are revealing through precise measurements of the faint thermal afterglow of the Big Bang--known as the cosmic microwave background, or CMB--and how their findings are transforming our view of the cosmos.Blending the latest findings in cosmology with essential concepts from physics, Lyman Page first helps readers to grasp the sheer enormity of the universe, explaining how to understand the history of its formation and evolution in space and time. Then he sheds light on how spatial variations in the CMB formed, how they reveal the age, size, and geometry of the universe, and how they offer a blueprint for the formation of cosmic structure.Not only does Page explain current observations and measurements, he describes how they can be woven together into a unified picture to form the Standard Model of Cosmology. Yet much remains unknown, and this incisive book also describes the search for ever deeper knowledge at the field's frontiers--from quests to understand the nature of neutrinos and dark energy to investigations into the physics of the very early universe.