Mathematics for the Million: How to Master the Magic of Numbers


Lancelot Hogben - 1937
    His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.

The Planiverse: Computer Contact with a Two-Dimensional World


A.K. Dewdney - 1983
    Now brought back into print in this revised and updated edition, the book is written within the great tradition of Abbott's Flatland, and Hinton's famous Sphereland. Accessible, imaginative, and clever, it will appeal to a wide array of readers, from serious mathematicians and computer scientists, to science fiction fans.

The Poincaré Conjecture: In Search of the Shape of the Universe


Donal O'Shea - 2007
    He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.

The Joy of Pi


David Blatner - 1997
    Pi-or ? as it is symbolically known-is infinite and, in The Joy of pi, it proves to be infinitely intriguing. With incisive historical insight and a refreshing sense of humor, David Blatner explores the many facets of pi and humankind's fascination with it-from the ancient Egyptians and Archimedes to Leonardo da Vinci and the modern-day Chudnovsky brothers, who have calculated pi to eight billion digits with a homemade supercomputer.The Joy of Pi is a book of many parts. Breezy narratives recount the history of pi and the quirky stories of those obsessed with it. Sidebars document fascinating pi trivia (including a segment from the 0. J. Simpson trial). Dozens of snippets and factoids reveal pi's remarkable impact over the centuries. Mnemonic devices teach how to memorize pi to many hundreds of digits (or more, if you're so inclined). Pi-inspired cartoons, poems, limericks, and jokes offer delightfully "square" pi humor. And, to satisfy even the most exacting of number jocks, the first one million digits of pi appear throughout the book.A tribute to all things pi, The Joy of pi is sure to foster a newfound affection and respect for the big number with the funny little symbol.

Geometry, Relativity and the Fourth Dimension


Rudolf Rucker - 1977
    A remarkable pictorial discussion of the curved space-time we call home, it achieves even greater impact through the use of 141 excellent illustrations. This is the first sustained visual account of many important topics in relativity theory that up till now have only been treated separately.Finding a perfect analogy in the situation of the geometrical characters in Flatland, Professor Rucker continues the adventures of the two-dimensional world visited by a three-dimensional being to explain our three-dimensional world in terms of the fourth dimension. Following this adventure into the fourth dimension, the author discusses non-Euclidean geometry, curved space, time as a higher dimension, special relativity, time travel, and the shape of space-time. The mathematics is sound throughout, but the casual reader may skip those few sections that seem too purely mathematical and still follow the line of argument. Readable and interesting in itself, the annotated bibliography is a valuable guide to further study.Professor Rucker teaches mathematics at the State University of New York in Geneseo. Students and laymen will find his discussion to be unusually stimulating. Experienced mathematicians and physicists will find a great deal of original material here and many unexpected novelties. Annotated bibliography. 44 problems.

Emergence: From Chaos To Order


John H. Holland - 1998
    Holland dramatically shows us that the “emergence” of order from disorder has much to teach us about life, mind and organizations. Creative activities in both the arts and the sciences depend upon an ability to model the world. The most creative of those models exhibits emergent properties, so that “what comes out is more than what goes in.” From the ingenious checkers-playing computer that started beating its creator in game after game, to the emotive creations of the poet, Emergence shows that Holland’s theory successfully predicts many complex behaviors in art and science.

The (Mis)Behavior of Markets


Benoît B. Mandelbrot - 1997
    Mandelbrot, one of the century's most influential mathematicians, is world-famous for making mathematical sense of a fact everybody knows but that geometers from Euclid on down had never assimilated: Clouds are not round, mountains are not cones, coastlines are not smooth. To these classic lines we can now add another example: Markets are not the safe bet your broker may claim. In his first book for a general audience, Mandelbrot, with co-author Richard L. Hudson, shows how the dominant way of thinking about the behavior of markets-a set of mathematical assumptions a century old and still learned by every MBA and financier in the world-simply does not work. As he did for the physical world in his classic The Fractal Geometry of Nature, Mandelbrot here uses fractal geometry to propose a new, more accurate way of describing market behavior. The complex gyrations of IBM's stock price and the dollar-euro exchange rate can now be reduced to straightforward formulae that yield a far better model of how risky they are. With his fractal tools, Mandelbrot has gotten to the bottom of how financial markets really work, and in doing so, he describes the volatile, dangerous (and strangely beautiful) properties that financial experts have never before accounted for. The result is no less than the foundation for a new science of finance.

A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

Quadrivium: The Four Classical Liberal Arts of Number, Geometry, Music, & Cosmology


John Martineau - 2010
    It was studied from antiquity to the Renaissance as a way of glimpsing the nature of reality. Geometry is number in space; music is number in time; and comology expresses number in space and time. Number, music, and geometry are metaphysical truths: life across the universe investigates them; they foreshadow the physical sciences.Quadrivium is the first volume to bring together these four subjects in many hundreds of years. Composed of six successful titles in the Wooden Books series-Sacred Geometry, Sacred Number, Harmonograph, The Elements of Music, Platonic & Archimedean Solids, and A Little Book of Coincidence-it makes ancient wisdom and its astonishing interconnectedness accessible to us today.Beautifully produced in six different colors of ink, Quadrivium will appeal to anyone interested in mathematics, music, astronomy, and how the universe works.

Div, Grad, Curl, and All That: An Informal Text on Vector Calculus


Harry M. Schey - 1973
    Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.

Theoretical Physics


Georg Joos - 1987
    Indispensable reference for graduates and undergraduates.

The Jazz of Physics: The Secret Link Between Music and the Structure of the Universe


Stephon Alexander - 2016
    Inspired by Einstein, Coltrane put physics and geometry at the core of his music. Physicist and jazz musician Stephon Alexander follows suit, using jazz to answer physics' most vexing questions about the past and future of the universe. Following the great minds that first drew the links between music and physics-a list including Pythagoras, Kepler, Newton, Einstein, and Rakim-The Jazz of Physics reveals that the ancient poetic idea of the Music of the Spheres," taken seriously, clarifies confounding issues in physics. The Jazz of Physics will fascinate and inspire anyone interested in the mysteries of our universe, music, and life itself.

Probability: A Very Short Introduction


John Haigh - 2012
    It requires, in short, an understanding of probability. In this Very Short Introduction, John Haigh introduces the ideas of probability--and the different philosophical approaches to probability--and gives a brief account of the history of development of probability theory, from Galileo and Pascal to Bayes, Laplace, Poisson, and Markov. He describes the basic probability distributions and discusses a wide range of applications in science, economics, and a variety of other contexts such as games and betting. He concludes with an intriguing discussion of coincidences and some curious paradoxes.

Calculus with Analytic Geometry


Howard Anton - 1980
    This popular student textbook has been revised and updated in order to provide clear explanations of the subject matter, permitting more classroom time to be spent in problem solving, applications or explanations of the most difficult points.

Statistics Without Tears: An Introduction for Non-Mathematicians


Derek Rowntree - 1981
    With it you can prime yourself with the key concepts of statistics before getting involved in the associated calculations. Using words and diagrams instead of figures, formulae and equations, Derek Rowntree makes statistics accessible to those who are non-mathematicians. And just to get you into the spirit of things. Rowntree has included questions in his argument; answer them as you go and you will be able to tell how far you have mastered the subject.