Book picks similar to
Einstein's Telescope: The Hunt for Dark Matter and Dark Energy in the Universe by Evalyn Gates
science
physics
astronomy
non-fiction
Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science
David Lindley - 2007
Heisenberg’s principle implied that scientific quantities/concepts do not have absolute, independent meaning, but acquire meaning only in terms of the experiments used to measure them. This proposition, undermining the cherished belief that science could reveal the physical world with limitless detail and precision, placed Heisenberg in direct opposition to the revered Albert Einstein. The eminent scientist Niels Bohr, Heisenberg’s mentor and Einstein’s long-time friend, found himself caught between the two.Uncertainty chronicles the birth and evolution of one of the most significant findings in the history of science, and portrays the clash of ideas and personalities it provoked. Einstein was emotionally as well as intellectually determined to prove the uncertainty principle false. Heisenberg represented a new generation of physicists who believed that quantum theory overthrew the old certainties; confident of his reasoning, Heisenberg dismissed Einstein’s objections. Bohr understood that Heisenberg was correct, but he also recognized the vital necessity of gaining Einstein’s support as the world faced the shocking implications of Heisenberg’s principle.
Genesis: The Story of How Everything Began
Guido Tonelli - 2020
From Hesiod's Chaos, described in his poem about the origins of the Greek gods, Theogony, to today's mind-bending theories of the multiverse, humans have been consumed by the relentless pursuit of an answer to one awe inspiring question: What exactly happened during those first moments?Guido Tonelli, the acclaimed, award-winning particle physicist and a central figure in the discovery of the Higgs boson (the "God particle"), reveals the extraordinary story of our genesis--from the origins of the universe, to the emergence of life on Earth, to the birth of human language with its power to describe the world. Evoking the seven days of biblical creation, Tonelli takes us on a brisk, lively tour through the evolution of our cosmos and considers the incredible challenges scientists face in exploring its mysteries. Genesis both explains the fundamental physics of our universe and marvels at the profound wonder of our existence.
The Magic Furnace: The Search for the Origins of Atoms
Marcus Chown - 1999
Every flower you pick contains atoms blasted into space by stellar explosions that blazed brighter than a billion suns. Thus begins The Magic Furnace, an eloquent, extraordinary account of how scientists unraveled the mystery of atoms, and helped to explain the dawn of life itself. The historic search for atoms and their stellar origins is truly one of the greatest detective stories of science. In effect, it offers two epics intertwined: the birth of atoms in the Big Bang and the evolution of stars and how they work. Neither could be told without the other, for the stars contain the key to unlocking the secret of atoms, and the atoms the solution to the secret of the stars. Marcus Chown leads readers through the major theories and experiments that propelled the search for atomic understanding, with engaging characterizations of the major atomic thinkers-from Democritus in ancient Greece to Binning and Rohrer in twentieth-century New York. He clarifies the science, explaining with enthusiasm the sequence of breakthroughs that proved the existence of atoms as the alphabet of nature and the discovery of subatomic particles and atomic energy potential. From there, he engagingly chronicles the leaps of insight that eventually revealed the elements, the universe, our world, and ourselves to be a product of two ultimate furnaces: the explosion of the Big Bang and the interior of stars such as supernovae and red giants. Chown successfully makes these massive concepts accessible for students, professionals, and science enthusiasts. His story sheds light on all of us, for in essence, we are all stardust.
Gamma: Exploring Euler's Constant
Julian Havil - 2003
Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"
Time's Arrow and Archimedes' Point: New Directions for the Physics of Time
Huw Price - 1996
Price begins with the mystery of the arrow of time. Why, for example, does disorder always increase, as required by the second law of thermodynamics? Price shows that, for over a century, most physicists have thought about these problems the wrong way. Misled by the human perspective from withintime, which distorts and exaggerates the differences between past and future, they have fallen victim to what Price calls the double standard fallacy: proposed explanations of the difference between the past and the future turn out to rely on a difference which has been slipped in at thebeginning, when the physicists themselves treat the past and future in different ways. To avoid this fallacy, Price argues, we need to overcome our natural tendency to think about the past and the future differently. We need to imagine a point outside time -- an Archimedean view from nowhen --from which to observe time in an unbiased way. Offering a lively criticism of many major modern physicists, including Richard Feynman and Stephen Hawking, Price shows that this fallacy remains common in physics today -- for example, when contemporary cosmologists theorize about the eventual fate of the universe. The big bang theory normallyassumes that the beginning and end of the universe will be very different. But if we are to avoid the double standard fallacy, we need to consider time symmetrically, and take seriously the possibility that the arrow of time may reverse when the universe recollapses into a big crunch. Price then turns to the greatest mystery of modern physics, the meaning of quantum theory. He argues that in missing the Archimedean viewpoint, modern physics has missed a radical and attractive solution to many of the apparent paradoxes of quantum physics. Many consequences of quantum theoryappear counterintuitive, such as Schrodinger's Cat, whose condition seems undetermined until observed, and Bell's Theorem, which suggests a spooky nonlocality, where events happening simultaneously in different places seem to affect each other directly. Price shows that these paradoxes can beavoided by allowing that at the quantum level the future does, indeed, affect the past. This demystifies nonlocality, and supports Einstein's unpopular intuition that quantum theory describes an objective world, existing independently of human observers: the Cat is alive or dead, even when nobodylooks. So interpreted, Price argues, quantum mechanics is simply the kind of theory we ought to have expected in microphysics -- from the symmetric standpoint.Time's Arrow and Archimedes' Point presents an innovative and controversial view of time and contemporary physics. In this exciting book, Price urges physicists, philosophers, and anyone who has ever pondered the mysteries of time to look at the world from the fresh perspective of Archimedes' Pointand gain a deeper understanding of ourselves, the universe around us, and our own place in time.
The Particles of the Universe
Jeff Yee - 2012
Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.
Heavenly Intrigue: Johannes Kepler, Tycho Brahe, and the Murder Behind One of History's Greatest Scientific Discoveries
Joshua Gilder - 2004
That collaboration would mark the dawn of modern science . . . and end in murder.Johannes Kepler changed forever our understanding of the universe with his three laws of planetary motion. He demolished the ancient model of planets moving in circular orbits and laid the foundation for the universal law of gravitation, setting physics on the course of revelation it follows to this day. Kepler was one of the greatest astronomers of all time. Yet if it hadn't been for the now lesser-known Tycho Brahe, the man for whom Kepler apprenticed, Kepler would be a mere footnote in today's science books. Brahe was the Imperial Mathematician at the court of the Holy Roman Emperor in Prague and the most famous astronomer of his era. He was one of the first great systematic empirical scientists and one of the earliest founders of the modern scientific method. His forty years of planetary observations—an unparalleled treasure of empirical data—contained the key to Kepler's historic breakthrough. But those observations would become available to Kepler only after Brahe's death. This groundbreaking history portrays the turbulent collaboration between these two astronomers at the turn of the seventeenth century and their shattering discoveries that would mark the transition from medieval to modern science. But that is only half the story. Based on recent forensic evidence (analyzed here for the first time) and original research into medieval and Renaissance alchemy—all buttressed by in-depth interviews with leading historians, scientists, and medical specialists—the authors have put together shocking and compelling evidence that Tycho Brahe did not die of natural causes, as has been believed for four hundred years. He was systematically poisoned—most likely by his assistant, Johannes Kepler. An epic tale of murder and scientific discovery, Heavenly Intrigue reveals the dark side of one of history’s most brilliant minds and tells the story of court politics, personal intrigue, and superstition that surrounded the protean invention of two great astronomers and their quest to find truth and beauty in the heavens above.
Physics and Philosophy: The Revolution in Modern Science
Werner Heisenberg - 1958
The theme of Heisenberg's exposition is that words and concepts familiar in daily life can lose their meaning in the world of relativity and quantum physics. This in turn has profound philosophical implications for the nature of reality and for our total world view.
Glacial Lake Missoula: And Its Humongous Flood
David D. Alt - 2001
Harlen Bretz walked the dry scabland channels of eastern Washington in the 1920s, it dawned on him that he was viewing a landscape sculpted by water. Lots of water. A flood of catastrophic proportions. Glacial Lake Missoula and Its Humongous Floods tells the gripping tale of a huge Ice Age lake that drained suddenly--not just once but repeatedly--and reshaped the landscape of the Northwest. The narrative follows the path of the floodwaters as they raged from western Montana across the Idaho Panhandle, then scoured through eastern Washington and down the Columbia Gorge to the Pacific Ocean. This is also the story of geologists grappling with scientific controversy--"of how personalities, pride, and prejudice sometimes superseded scientific evidence."
The Day the Universe Changed: How Galileo's Telescope Changed the Truth
James Burke - 1986
Annotation copyright Book News, Inc. Portland, Or.
Chasing Venus: The Race to Measure the Heavens
Andrea Wulf - 2012
Through that observation, astronomers could calculate the size of the solar system—but only if they could compile data from many different points of the globe, all recorded during the short period of the transit. Overcoming incredible odds and political strife, astronomers from Britain, France, Russia, Germany, Sweden, and the American colonies set up observatories in remote corners of the world, only to have their efforts thwarted by unpredictable weather and warring armies. Fortunately, transits of Venus occur in pairs: eight years later, the scientists would have another opportunity to succeed. Chasing Venus brings to life the personalities of the eighteenth-century astronomers who embarked upon this complex and essential scientific venture, painting a vivid portrait of the collaborations, the rivalries, and the volatile international politics that hindered them at every turn. In the end, what they accomplished would change our conception of the universe and would forever alter the nature of scientific research.
The Perfect Theory: A Century of Geniuses and the Battle over General Relativity
Pedro G. Ferreira - 2014
Their work has uncovered a number of the universe’s more surprising secrets, and many believe further wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, astrophysicist Pedro Ferreira brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken up its challenge. For these scientists, the theory has been both a treasure trove and an enigma, fueling a century of intellectual struggle and triumph.. Einstein’s theory, which explains the relationships among gravity, space, and time, is possibly the most perfect intellectual achievement of modern physics, yet studying it has always been a controversial endeavor. Relativists were the target of persecution in Hitler’s Germany, hounded in Stalin’s Russia, and disdained in 1950s America. Even today, PhD students are warned that specializing in general relativity will make them unemployable. Despite these pitfalls, general relativity has flourished, delivering key insights into our understanding of the origin of time and the evolution of all the stars and galaxies in the cosmos. Its adherents have revealed what lies at the farthest reaches of the universe, shed light on the smallest scales of existence, and explained how the fabric of reality emerges. Dark matter, dark energy, black holes, and string theory are all progeny of Einstein’s theory. We are in the midst of a momentous transformation in modern physics. As scientists look farther and more clearly into space than ever before, The Perfect Theory reveals the greater relevance of general relativity, showing us where it started, where it has led, and where it can still take us.
It Must Be Beautiful: Great Equations of Modern Science
Graham Farmelo - 2002
Contributors include Steven Weinberg, Peter Galison, John Maynard Smith, and Frank Wilczek.
Astronomy For Dummies
Stephen P. Maran - 1999
Featuring star maps, charts, gorgeous full-color photographs, and easy-to-follow explanations, this fact-filled guide gives readers a leg up on the basic principles of astronomy and shows how to get the most out of binoculars, telescopes, planetarium visits, and other fun astronomical activities. This updated edition includes an updated color signature and covers the many discoveries made in recent years, as well as new astronomy Web sites.
A History of π
Petr Beckmann - 1970
Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.