A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

Our Universe: An Astronomer's Guide


Jo Dunkley - 2019
    For thousands of years it has been at the heart of scientific and philosophical inquiry, from the first star catalogues etched into ancient Mesopotamian clay tablets to the metres-wide telescopes constructed in Chile's Atacama Desert today. On a clear night it is hard not to look up and pick out familiar constellations, and to think of the visionary minds who pioneered our understanding of what lies beyond.In this thrilling new guide to our Universe and how it works, Professor of Astrophysics Jo Dunkley reveals how it only becomes more beautiful and exciting the more we discover about it. With warmth and clarity, Dunkley takes us from the very basics - why the Earth orbits the Sun, and how our Moon works - right up to massive, strange phenomena like superclusters, quasars, and the geometry of spacetime. As she does so, Dunkley unfurls the history of humankind's heroic journey to understand the history and structure of the cosmos, revealing the extraordinary, little-known stories of astronomy pioneers including Williamina Fleming, Vera Rubin and Jocelyn Bell Burnell.Illuminating and uplifting, this is your essential guide to the biggest subject of all.

The Nature of Code


Daniel Shiffman - 2012
    Readers will progress from building a basic physics engine to creating intelligent moving objects and complex systems, setting the foundation for further experiments in generative design. Subjects covered include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. The book's examples are written in Processing, an open-source language and development environment built on top of the Java programming language. On the book's website (http://www.natureofcode.com), the examples run in the browser via Processing's JavaScript mode.

The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems, and Personalities


William Dunham - 1994
    . .he believes these ideas to be accessible to the audience he wantsto reach, and he writes so that they are. -- NatureIf you want to encourage anyone's interest in math, get them TheMathematical Universe. * New Scientist

Fields of Color: The theory that escaped Einstein


Rodney A. Brooks - 2010
    QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.

Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving


Sanjoy Mahajan - 2010
    Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

Strange New Worlds: The Search for Alien Planets and Life Beyond Our Solar System


Ray Jayawardhana - 2011
    Before the decade is out, telltale signs that they harbor life may be found. If they are, the ramifications for all areas of human thought and endeavor--from religion and philosophy to art and biology--will be breathtaking. In Strange New Worlds, renowned astronomer Ray Jayawardhana brings news from the front lines of the epic quest to find planets--and alien life--beyond our solar system.Only in the past fifteen years, after millennia of speculation, have astronomers begun to discover planets around other stars--hundreds in fact. But the hunt to find a true Earth-like world goes on. In this book, Jayawardhana vividly recounts the stories of the scientists and the remarkable breakthroughs that have ushered in this extraordinary age of exploration. He describes the latest findings--including his own--that are challenging our view of the cosmos and casting new light on the origins and evolution of planets and planetary systems. He reveals how technology is rapidly advancing to support direct observations of Jupiter-like gas giants and super-Earths--rocky planets with several times the mass of our own planet--and how astronomers use biomarkers to seek possible life on other worlds.Strange New Worlds provides an insider's look at the cutting-edge science of today's planet hunters, our prospects for discovering alien life, and the debates and controversies at the forefront of extrasolar-planet research.

Elemental: How the Periodic Table Can Now Explain (Nearly) Everything


Tim James - 2018
    When the seventh row of the periodic table of elements was completed in June 2016 with the addition of four final elements—nihonium, moscovium, tennessine, and oganesson—we at last could identify all the ingredients necessary to construct our world.In Elemental, chemist and science educator Tim James provides an informative, entertaining, and quirkily illustrated guide to the table that shows clearly how this abstract and seemingly jumbled graphic is relevant to our day-to-day lives.James tells the story of the periodic table from its ancient Greek roots, when you could count the number of elements humans were aware of on one hand, to the modern alchemists of the twentieth and twenty-first centuries who have used nuclear chemistry and physics to generate new elements and complete the periodic table. In addition to this, he answers questions such as: What is the chemical symbol for a human? What would happen if all of the elements were mixed together? Which liquid can teleport through walls? Why is the medieval dream of transmuting lead into gold now a reality?Whether you're studying the periodic table for the first time or are simply interested in the fundamental building blocks of the universe—from the core of the sun to the networks in your brain—Elemental is the perfect guide.

A First Course in String Theory


Barton Zwiebach - 2004
    The first part deals with basic ideas, reviewing special relativity and electromagnetism while introducing the concept of extra dimensions. D-branes and the classical dynamics of relativistic strings are discussed next, and the quantization of open and closed bosonic strings in the light-cone gauge, along with a brief introduction to superstrings. The second part begins with a detailed study of D-branes followed by string thermodynamics. It discusses possible physical applications, and covers T-duality of open and closed strings, electromagnetic fields on D-branes, Born/Infeld electrodynamics, covariant string quantization and string interactions. Primarily aimed as a textbook for advanced undergraduate and beginning graduate courses, it will also be ideal for a wide range of scientists and mathematicians who are curious about string theory.

Mathematics for the Nonmathematician


Morris Kline - 1967
    But there is one other motive which is as strong as any of these — the search for beauty. Mathematics is an art, and as such affords the pleasures which all the arts afford." In this erudite, entertaining college-level text, Morris Kline, Professor Emeritus of Mathematics at New York University, provides the liberal arts student with a detailed treatment of mathematics in a cultural and historical context. The book can also act as a self-study vehicle for advanced high school students and laymen. Professor Kline begins with an overview, tracing the development of mathematics to the ancient Greeks, and following its evolution through the Middle Ages and the Renaissance to the present day. Subsequent chapters focus on specific subject areas, such as "Logic and Mathematics," "Number: The Fundamental Concept," "Parametric Equations and Curvilinear Motion," "The Differential Calculus," and "The Theory of Probability." Each of these sections offers a step-by-step explanation of concepts and then tests the student's understanding with exercises and problems. At the same time, these concepts are linked to pure and applied science, engineering, philosophy, the social sciences or even the arts.In one section, Professor Kline discusses non-Euclidean geometry, ranking it with evolution as one of the "two concepts which have most profoundly revolutionized our intellectual development since the nineteenth century." His lucid treatment of this difficult subject starts in the 1800s with the pioneering work of Gauss, Lobachevsky, Bolyai and Riemann, and moves forward to the theory of relativity, explaining the mathematical, scientific and philosophical aspects of this pivotal breakthrough. Mathematics for the Nonmathematician exemplifies Morris Kline's rare ability to simplify complex subjects for the nonspecialist.

For the Love of Physics: From the End of the Rainbow to the Edge of Time - A Journey Through the Wonders of Physics


Walter Lewin - 2011
    “I walk with a new spring in my step and I look at life through physics-colored eyes,” wrote one such fan. When Lewin’s lectures were made available online, he became an instant YouTube celebrity, and The New York Times declared, “Walter Lewin delivers his lectures with the panache of Julia Child bringing French cooking to amateurs and the zany theatricality of YouTube’s greatest hits.” For more than thirty years as a beloved professor at the Massachusetts Institute of Technology, Lewin honed his singular craft of making physics not only accessible but truly fun, whether putting his head in the path of a wrecking ball, supercharging himself with three hundred thousand volts of electricity, or demonstrating why the sky is blue and why clouds are white. Now, as Carl Sagan did for astronomy and Brian Green did for cosmology, Lewin takes readers on a marvelous journey in For the Love of Physics, opening our eyes as never before to the amazing beauty and power with which physics can reveal the hidden workings of the world all around us. “I introduce people to their own world,” writes Lewin, “the world they live in and are familiar with but don’t approach like a physicist—yet.” Could it be true that we are shorter standing up than lying down? Why can we snorkel no deeper than about one foot below the surface? Why are the colors of a rainbow always in the same order, and would it be possible to put our hand out and touch one? Whether introducing why the air smells so fresh after a lightning storm, why we briefly lose (and gain) weight when we ride in an elevator, or what the big bang would have sounded like had anyone existed to hear it, Lewin never ceases to surprise and delight with the extraordinary ability of physics to answer even the most elusive questions. Recounting his own exciting discoveries as a pioneer in the field of X-ray astronomy—arriving at MIT right at the start of an astonishing revolution in astronomy—he also brings to life the power of physics to reach into the vastness of space and unveil exotic uncharted territories, from the marvels of a supernova explosion in the Large Magellanic Cloud to the unseeable depths of black holes. “For me,” Lewin writes, “physics is a way of seeing—the spectacular and the mundane, the immense and the minute—as a beautiful, thrillingly interwoven whole.” His wonderfully inventive and vivid ways of introducing us to the revelations of physics impart to us a new appreciation of the remarkable beauty and intricate harmonies of the forces that govern our lives.

When Einstein Walked with Gödel: Excursions to the Edge of Thought


Jim Holt - 2018
    With his trademark clarity and humor, Holt probes the mysteries of quantum mechanics, the quest for the foundations of mathematics, and the nature of logic and truth. Along the way, he offers intimate biographical sketches of celebrated and neglected thinkers, from the physicist Emmy Noether to the computing pioneer Alan Turing and the discoverer of fractals, Benoit Mandelbrot. Holt offers a painless and playful introduction to many of our most beautiful but least understood ideas, from Einsteinian relativity to string theory, and also invites us to consider why the greatest logician of the twentieth century believed the U.S. Constitution contained a terrible contradiction--and whether the universe truly has a future.

Imagining the Tenth Dimension: A New Way of Thinking about Time and Space


Rob Bryanton - 2006
    Ten dimensions? Most of us have barely gotten used to the idea that there are four.Using simple geometry and an easygoing writing style, author Rob Bryanton starts with the lower dimensions that we are all familiar with, then uses those concepts to build one layer upon another, ultimately arriving at a way of imagining the tenth dimension.Part scientific exploration, part philosophy, this unique book touches upon such diverse topics as dark matter, Feynman's "sum over paths", the quantum observer, and the soul. It is aimed at anyone interested in leading-edge theories about cosmology and the nature of reality, but it is not about mainstream physics. Rather, Imagining the Tenth Dimension is a mind-expanding exercise that could change the way you view this incredible universe in which we live.

A Strange Wilderness: The Lives of the Great Mathematicians


Amir D. Aczel - 2011
    As exciting as any action/adventure novel, this is actually the story of incredible individuals and engrossing tales behind the most profound, enduring mathematical theorems.Archimedes famously ran naked through the streets shouting, “Eureka, eureka!” after finding a method for measuring the volume of an irregular-shaped object. René Descartes was not only a great French mathematician, philosopher, physicist, and natural scientist; he was also an expert swordsman who traveled with European armies from town to town, dressed in green taffeta and accompanied by a valet. Georg Cantor grappled with mental illness as he explored the highly counterintuitive, bizarre properties of infinite sets and numbers. Emmy Noether struggled to find employment as she laid the mathematical groundwork for modern theoretical physics. And Alexander Grothendieck taught himself mathematics while interned in Nazi concentration camps, only to disappear into the Pyrenees at the zenith of his career.These are just a few stories recounted in this absorbing narrative. In probing the lives of the preeminent mathematicians in history, a Strange Wilderness will leave you entertained and enlightened, with a newfound appreciation of the tenacity, complexity, and brilliance of the mathematical genius.