Book picks similar to
Applied Statistics and Probability for Engineers [With Free Access to Online Student Resources] by Douglas C. Montgomery
textbooks
statistics
engineering
science
Learning Python
Mark Lutz - 2003
Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
Steven H. Strogatz - 1994
The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
Human Physiology
Stuart Ira Fox - 2007
The beginning chapters introduce basic chemical and biological concepts to provide students with the framework they need to comprehend physiological principles. The chapters that follow promote conceptual understanding rather than rote memorization of facts. Health applications are included throughout the book to heighten interest, deepen understanding of physiological concepts, and help students relate the material to their individual career goals. Every effort has been made to help students integrate related concepts and understand the relationships between anatomical structures and their functions.
The Art of R Programming: A Tour of Statistical Software Design
Norman Matloff - 2011
No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.
Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS
John K. Kruschke - 2010
Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884 0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Data Mining: Practical Machine Learning Tools and Techniques
Ian H. Witten - 1999
This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915 0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Multivariate Data Analysis
Joseph F. Hair Jr. - 1979
This book provides an applications-oriented introduction to multivariate data analysis for the non-statistician, by focusing on the fundamental concepts that affect the use of specific techniques.
Elements of Information Theory
Thomas M. Cover - 1991
Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Chemistry
Raymond Chang - 1988
It strikes a balance between theory and application by incorporating real examples, and helping students visualize the three-dimensional atomic and molecular structures that are the basis of chemical activity.
Thermodynamics: An Engineering Approach [with Student Resource DVD]
Yunus A. Cengel - 2006
The subject of thermodynamics deals with energy and has long been an essential part of engineering curricula all over the world. Its broad application area ranges from microscopic organisms to common household appliances, transportation vehicles, power generation systems, and even philosophy. This introductory book contains sufficient material for two sequential courses in thermodynamics, and students are assumed to have an adequate background in calculus and physics. A conscious effort is made to emphasize the basic principles of thermodynamics while also providing students with a perspective of how computational tools are used in engineering practice. The traditional classical, or macroscopic, approach is used throughout the text, with microscopic arguments serving in a supporting role as appropriate. This approach is more in line with students’ intuition and makes learning the subject matter much easier.
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Introduction to Graph Theory
Douglas B. West - 1995
Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.