Real Analysis


H.L. Royden - 1963
    Dealing with measure theory and Lebesque integration, this is an introductory graduate text.

Options, Futures and Other Derivatives


John C. Hull
    Changes in the fifth edition include: A new chapter on credit derivatives (Chapter 21). New! Business Snapshots highlight real-world situations and relevant issues. The first six chapters have been -reorganized to better meet the needs of students and .instructors. A new release of the Excel-based software, DerivaGem, is included with each text. A useful Solutions Manual/Study Guide, which includes the worked-out answers to the "Questions and Problems" sections of each chapter, can be purchased separately (ISBN: 0-13-144570-7).

The C++ Programming Language


Bjarne Stroustrup - 1986
    For this special hardcover edition, two new appendixes on locales and standard library exception safety (also available at www.research.att.com/ bs/) have been added. The result is complete, authoritative coverage of the C++ language, its standard library, and key design techniques. Based on the ANSI/ISO C++ standard, The C++ Programming Language provides current and comprehensive coverage of all C++ language features and standard library components. For example:abstract classes as interfaces class hierarchies for object-oriented programming templates as the basis for type-safe generic software exceptions for regular error handling namespaces for modularity in large-scale software run-time type identification for loosely coupled systems the C subset of C++ for C compatibility and system-level work standard containers and algorithms standard strings, I/O streams, and numerics C compatibility, internationalization, and exception safety Bjarne Stroustrup makes C++ even more accessible to those new to the language, while adding advanced information and techniques that even expert C++ programmers will find invaluable.

The R Book


Michael J. Crawley - 2007
    The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.

Machine Learning with R


Brett Lantz - 2014
    This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

How Linux Works: What Every Superuser Should Know


Brian Ward - 2004
    Some books try to give you copy-and-paste instructions for how to deal with every single system issue that may arise, but How Linux Works actually shows you how the Linux system functions so that you can come up with your own solutions. After a guided tour of filesystems, the boot sequence, system management basics, and networking, author Brian Ward delves into open-ended topics such as development tools, custom kernels, and buying hardware, all from an administrator's point of view. With a mixture of background theory and real-world examples, this book shows both "how" to administer Linux, and "why" each particular technique works, so that you will know how to make Linux work for you.

Data Mining: Practical Machine Learning Tools and Techniques


Ian H. Witten - 1999
    This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915            0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Graph Theory With Applications To Engineering And Computer Science


Narsingh Deo - 2004
    GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1

CK-12 Calculus


CK-12 Foundation - 2010
    Topics include: Limits, Derivatives, and Integrations.

Mathematics for Class XII(CBSE)


R.D. Sharma
    

Multivariate Data Analysis


Joseph F. Hair Jr. - 1979
    This book provides an applications-oriented introduction to multivariate data analysis for the non-statistician, by focusing on the fundamental concepts that affect the use of specific techniques.

Python 3 Object Oriented Programming


Dusty Phillips - 2010
    Many examples are taken from real-world projects. The book focuses on high-level design as well as the gritty details of the Python syntax. The provided exercises inspire the reader to think about his or her own code, rather than providing solved problems. If you're new to Object Oriented Programming techniques, or if you have basic Python skills and wish to learn in depth how and when to correctly apply Object Oriented Programming in Python, this is the book for you. If you are an object-oriented programmer for other languages, you too will find this book a useful introduction to Python, as it uses terminology you are already familiar with. Python 2 programmers seeking a leg up in the new world of Python 3 will also find the book beneficial, and you need not necessarily know Python 2.

Introductory Functional Analysis with Applications


Erwin Kreyszig - 1978
    With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists.Currently available in the Series: Emil ArtinGeometnc Algebra R. W. CarterSimple Groups Of Lie Type Richard CourantDifferential and Integrai Calculus. Volume I Richard CourantDifferential and Integral Calculus. Volume II Richard Courant & D. HilbertMethods of Mathematical Physics, Volume I Richard Courant & D. HilbertMethods of Mathematical Physics. Volume II Harold M. S. CoxeterIntroduction to Modern Geometry. Second Edition Charles W. Curtis, Irving ReinerRepresentation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartzunear Operators. Part One. General Theory Nelson Dunford. Jacob T. SchwartzLinear Operators, Part Two. Spectral Theory--Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. SchwartzLinear Operators. Part Three. Spectral Operators Peter HenriciApplied and Computational Complex Analysis. Volume I--Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang WuA Course in Modern Algebra Harry HochstadtIntegral Equations Erwin KreyszigIntroductory Functional Analysis with Applications P. M. PrenterSplines and Variational Methods C. L. SiegelTopics in Complex Function Theory. Volume I --Elliptic Functions and Uniformizatton Theory C. L. SiegelTopics in Complex Function Theory. Volume II --Automorphic and Abelian Integrals C. L. SiegelTopics In Complex Function Theory. Volume III --Abelian Functions & Modular Functions of Several Variables J. J. StokerDifferential Geometry

Stochastic Calculus Models for Finance II: Continuous Time Models (Springer Finance)


Steven E. Shreve - 2004
    The content of this book has been used successfully with students whose mathematics background consists of calculus and calculus-based probability. The text gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided. The book includes a self-contained treatment of the probability theory needed for shastic calculus, including Brownian motion and its properties. Advanced topics include foreign exchange models, forward measures, and jump-diffusion processes.This book is being published in two volumes. This second volume develops shastic calculus, martingales, risk-neutral pricing, exotic options and term structure models, all in continuous time.Masters level students and researchers in mathematical finance and financial engineering will find this book useful.Steven E. Shreve is Co-Founder of the Carnegie Mellon MS Program in Computational Finance and winner of the Carnegie Mellon Doherty Prize for sustained contributions to education.