Beginning Programming with Python for Dummies
John Paul Mueller - 2014
It requires three to five times less time than developing in Java, is a great building block for learning both procedural and object-oriented programming concepts, and is an ideal language for data analysis. Beginning Programming with Python For Dummies is the perfect guide to this dynamic and powerful programming language--even if you've never coded before! Author John Paul Mueller draws on his vast programming knowledge and experience to guide you step-by-step through the syntax and logic of programming with Python and provides several real-world programming examples to give you hands-on experience trying out what you've learned.Provides a solid understanding of basic computer programming concepts and helps familiarize you with syntax and logic Explains the fundamentals of procedural and object-oriented programming Shows how Python is being used for data analysis and other applications Includes short, practical programming samples to apply your skills to real-world programming scenarios Whether you've never written a line of code or are just trying to pick up Python, there's nothing to fear with the fun and friendly Beginning Programming with Python For Dummies leading the way.
Python Programming for the Absolute Beginner
Michael Dawson - 2003
Developed by computer science instructors, books in the For the absolute beginner series teach the principles of programming through simple game creation. You will acquire the skills that you need for more practical Python programming applications and you will learn how these skills can be put to use in real-world scenarios. Best of all, by the time you finish this book you will be able to apply the basic principles you've learned to the next programming language you tackle.Features Fun approach to a difficult topic Readers will create games with Python as they learn the fundamentals of this programming language The CD will include games that readers can cut and paste into their own Web site The author provides challenges at the end of chapters to push readers to program on their own.
Seven Concurrency Models in Seven Weeks: When Threads Unravel
Paul Butcher - 2014
Concurrency and parallelism are the keys, and Seven Concurrency Models in Seven Weeks equips you for this new world. See how emerging technologies such as actors and functional programming address issues with traditional threads and locks development. Learn how to exploit the parallelism in your computer's GPU and leverage clusters of machines with MapReduce and Stream Processing. And do it all with the confidence that comes from using tools that help you write crystal clear, high-quality code. This book will show you how to exploit different parallel architectures to improve your code's performance, scalability, and resilience. Learn about the perils of traditional threads and locks programming and how to overcome them through careful design and by working with the standard library. See how actors enable software running on geographically distributed computers to collaborate, handle failure, and create systems that stay up 24/7/365. Understand why shared mutable state is the enemy of robust concurrent code, and see how functional programming together with technologies such as Software Transactional Memory (STM) and automatic parallelism help you tame it. You'll learn about the untapped potential within every GPU and how GPGPU software can unleash it. You'll see how to use MapReduce to harness massive clusters to solve previously intractible problems, and how, in concert with Stream Processing, big data can be tamed. With an understanding of the strengths and weaknesses of each of the different models and hardware architectures, you'll be empowered to tackle any problem with confidence.What You Need: The example code can be compiled and executed on *nix, OS X, or Windows. Instructions on how to download the supporting build systems are given in each chapter.
Python in a Nutshell
Alex Martelli - 2003
Demonstrates the programming language's strength as a Web development tool, covering syntax, data types, built-ins, the Python standard module library, and real world examples
Doing Math with Python
Amit Saha - 2015
Python is easy to learn, and it's perfect for exploring topics like statistics, geometry, probability, and calculus. You’ll learn to write programs to find derivatives, solve equations graphically, manipulate algebraic expressions, even examine projectile motion.Rather than crank through tedious calculations by hand, you'll learn how to use Python functions and modules to handle the number crunching while you focus on the principles behind the math. Exercises throughout teach fundamental programming concepts, like using functions, handling user input, and reading and manipulating data. As you learn to think computationally, you'll discover new ways to explore and think about math, and gain valuable programming skills that you can use to continue your study of math and computer science.If you’re interested in math but have yet to dip into programming, you’ll find that Python makes it easy to go deeper into the subject—let Python handle the tedious work while you spend more time on the math.
The Art of the Metaobject Protocol
Gregor Kiczales - 1991
The authors, who developed the metaobject protocol andwho were among the group that developed CLOS, introduce this new approach toprogramming language design, describe its evolution and design principles, andpresent a formal specification of a metaobject protocol for CLOS.Kiczales, desRivi?res, and Bobrow show that the "art of metaobject protocol design" lies increating a synthetic combination of object-oriented and reflective techniques thatcan be applied under existing software engineering considerations to yield a newapproach to programming language design that meets a broad set of designcriteria.One of the major benefits of including the metaobject protocol inprogramming languages is that it allows users to adjust the language to better suittheir needs. Metaobject protocols also disprove the adage that adding moreflexibility to a programming language reduces its performance. In presenting theprinciples of metaobject protocols, the authors work with actual code for asimplified implementation of CLOS and its metaobject protocol, providing anopportunity for the reader to gain hands-on experience with the design process. Theyalso include a number of exercises that address important concerns and openissues.Gregor Kiczales and Jim des Rivi?res, are Members of the Research Staff, andDaniel Bobrow is a Research Fellow, in the System Sciences Laboratory at Xerox PaloAlto Research Center.
Git Pocket Guide
Richard E. Silverman - 2013
It provides a compact, readable introduction to Git for new users, as well as a reference to common commands and procedures for those of you with Git experience.Written for Git version 1.8.2, this handy task-oriented guide is organized around the basic version control functions you need, such as making commits, fixing mistakes, merging, and searching history.Examine the state of your project at earlier points in timeLearn the basics of creating and making changes to a repositoryCreate branches so many people can work on a project simultaneouslyMerge branches and reconcile the changes among themClone an existing repository and share changes with push/pull commandsExamine and change your repository’s commit historyAccess remote repositories, using different network protocolsGet recipes for accomplishing a variety of common tasks
Algorithms of the Intelligent Web
Haralambos Marmanis - 2009
They use powerful techniques to process information intelligently and offer features based on patterns and relationships in data. Algorithms of the Intelligent Web shows readers how to use the same techniques employed by household names like Google Ad Sense, Netflix, and Amazon to transform raw data into actionable information.Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. Readers learn to build Netflix-style recommendation engines, and how to apply the same techniques to social-networking sites. See how click-trace analysis can result in smarter ad rotations. All the examples are designed both to be reused and to illustrate a general technique- an algorithm-that applies to a broad range of scenarios.As they work through the book's many examples, readers learn about recommendation systems, search and ranking, automatic grouping of similar objects, classification of objects, forecasting models, and autonomous agents. They also become familiar with a large number of open-source libraries and SDKs, and freely available APIs from the hottest sites on the internet, such as Facebook, Google, eBay, and Yahoo.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
The Self-Taught Programmer: The Definitive Guide to Programming Professionally
Cory Althoff - 2017
After a year of self-study, I learned to program well enough to land a job as a software engineer II at eBay. Once I got there, I realized I was severely under-prepared. I was overwhelmed by the amount of things I needed to know but hadn't learned yet. My journey learning to program, and my experience at my first job as a software engineer were the inspiration for this book. This book is not just about learning to program; although you will learn to code. If you want to program professionally, it is not enough to learn to code; that is why, in addition to helping you learn to program, I also cover the rest of the things you need to know to program professionally that classes and books don't teach you. "The Self-taught Programmer" is a roadmap, a guide to take you from writing your first Python program, to passing your first technical interview. I divided the book into five sections: 1. Start to program in Python 3 and build your first program.2. Learn Object-oriented programming and create a powerful Python program to get you hooked.3. Learn to use tools like Git, Bash, and regular expressions. Then use your new coding skills to build a web scraper.4. Study Computer Science fundamentals like data structures and algorithms.5. Finish with best coding practices, tips for working with a team, and advice on landing a programming job.You CAN learn to program professionally. The path is there. Will you take it?
A Common-Sense Guide to Data Structures and Algorithms: Level Up Your Core Programming Skills
Jay Wengrow - 2017
If you have received one of these copies, please contact the Pragmatic Bookshelf at support@pragprog.com, and we will replace it for you.Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today's web and mobile apps. This book takes a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code. Graphics and examples make these computer science concepts understandable and relevant. You can use these techniques with any language; examples in the book are in JavaScript, Python, and Ruby.Use Big O notation, the primary tool for evaluating algorithms, to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You'll even encounter a single keyword that can give your code a turbo boost. Jay Wengrow brings to this book the key teaching practices he developed as a web development bootcamp founder and educator.Use these techniques today to make your code faster and more scalable.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Python for Kids
Jason R. Briggs - 2012
Jason Briggs, author of the popular online tutorial "Snake Wrangling for Kids," begins with the basics of how to install Python and write simple commands. In bite-sized chapters, he instructs readers on the essentials of Python, including how to use Python's extensive standard library, the difference between strings and lists, and using for-loops and while-loops. By the end of the book, readers have built a game and created drawings with Python's graphics library, Turtle. Each chapter closes with fun and relevant exercises that challenge the reader to put their newly acquired knowledge to the test.
Black Hat Python: Python Programming for Hackers and Pentesters
Justin Seitz - 2014
But just how does the magic happen?In Black Hat Python, the latest from Justin Seitz (author of the best-selling Gray Hat Python), you'll explore the darker side of Python's capabilities writing network sniffers, manipulating packets, infecting virtual machines, creating stealthy trojans, and more. You'll learn how to:Create a trojan command-and-control using GitHubDetect sandboxing and automate common malware tasks, like keylogging and screenshottingEscalate Windows privileges with creative process controlUse offensive memory forensics tricks to retrieve password hashes and inject shellcode into a virtual machineExtend the popular Burp Suite web-hacking toolAbuse Windows COM automation to perform a man-in-the-browser attackExfiltrate data from a network most sneakilyInsider techniques and creative challenges throughout show you how to extend the hacks and how to write your own exploits.When it comes to offensive security, your ability to create powerful tools on the fly is indispensable. Learn how in Black Hat Python."
Functional and Reactive Domain Modeling
Debasish Ghosh - 2016
Domain modeling is a technique for creating a conceptual map of a problem space such as a business system or a scientific application, so that the developer can write the software more efficiently. The domain model doesn't present a solution to the problem, but instead describes the attributes, roles, and relationships of the entities involved, along with the constraints of the system.Reactive application design, which uses functional programming principles along with asynchronous non-blocking communication, promises to be a potent pattern for developing performant systems that are relatively easy to manage, maintain and evolve. Typically we call such models "reactive" because they are more responsive both to user requests and to system loads. But designing and implementing such models requires a different way of thinking. Because the core behaviors are implemented using pure functions, you can reason about the domain model just like mathematics, so your model becomes verifiable and robust.Functional and Reactive Domain Modeling teaches you how to think of the domain model in terms of pure functions and how to compose them to build larger abstractions. You will start with the basics of functional programming and gradually progress to the advanced concepts and patterns that you need to know to implement complex domain models. The book demonstrates how advanced FP patterns like algebraic data types, typeclass based design, and isolation of side-effects can make your model compose for readability and verifiability.On the subject of reactive modeling, the book focuses on higher order concurrency patterns like actors and futures. It uses the Akka framework as the reference implementation and demonstrates how advanced architectural patterns like event sourcing and CQRS can be put to great use in implementing scalable models. You will learn techniques that are radically different from the standard RDBMS based applications that are based on mutation of records. You'll also pick up important patterns like using asynchronous messaging for interaction based on non blocking concurrency and model persistence, which delivers the speed of in-memory processing along with suitable guarantees of reliability.
Professor Frisby's Mostly Adequate Guide to Functional Programming
Brian Lonsdorf
We'll use the world's most popular functional programming language: JavaScript. Some may feel this is a poor choice as it's against the grain of the current culture which, at the moment, feels predominately imperative. However, I believe it is the best way to learn FP for several reasons:You likely use it every day at work.This makes it possible to practice and apply your acquired knowledge each day on real world programs rather than pet projects on nights and weekends in an esoteric FP language.We don't have to learn everything up front to start writing programs.In a pure functional language, you cannot log a variable or read a DOM node without using monads. Here we can cheat a little as we learn to purify our codebase. It's also easier to get started in this language since it's mixed paradigm and you can fall back on your current practices while there are gaps in your knowledge.The language is fully capable of writing top notch functional code.We have all the features we need to mimic a language like Scala or Haskell with the help of a tiny library or two. Object-oriented programming currently dominates the industry, but it's clearly awkward in JavaScript. It's akin to camping off of a highway or tap dancing in galoshes. We have to bind all over the place lest this change out from under us, we don't have classes[^Yet], we have various work arounds for the quirky behavior when the new keyword is forgotten, private members are only available via closures. To a lot of us, FP feels more natural anyways.That said, typed functional languages will, without a doubt, be the best place to code in the style presented by this book. JavaScript will be our means of learning a paradigm, where you apply it is up to you. Luckily, the interfaces are mathematical and, as such, ubiquitous. You'll find yourself at home with swiftz, scalaz, haskell, purescript, and other mathematically inclined environments.