The Feynman Lectures on Physics


Richard P. Feynman - 1964
    A new foreword by Kip Thorne, the current Richard Feynman Professor of Theoretical Physics at Caltech, discusses the relevance of the new edition to today's readers. This boxed set also includes Feynman's new Tips on Physics—the four previously unpublished lectures that Feynman gave to students preparing for exams at the end of his course. Thus, this 4-volume set is the complete and definitive edition of The Feynman Lectures on Physics. Packaged in a specially designed slipcase, this 4-volume set provides the ultimate legacy of Feynman's extraordinary contribution to students, teachers, researches, and lay readers around the world.

Hidden In Plain Sight 2: The Equation of the Universe


Andrew H. Thomas - 2013
    Enjoy a thrilling intergalactic tour as Andrew Thomas redefines the force of gravity and introduces a brave new view of the universe!

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

13 Things That Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time


Michael Brooks - 2008
    The effects of homeopathy don’t go away under rigorous scientific conditions. The laws of nature aren’t what they used to be. Thirty years on, no one has an explanation for a seemingly intelligent signal received from outer space. The US Department of Energy is re-examining cold fusion because the experimental evidence seems too solid to ignore. The placebo effect is put to work in medicine while doctors can’t agree whether it even exists.In an age when science is supposed to be king, scientists are beset by experimental results they simply can’t explain. But, if the past is anything to go by, these anomalies contain the seeds of future revolutions. While taking readers on an entertaining tour d’horizon of the strangest of scientific findings – involving everything from our lack of free will to Martian methane that offers new evidence of life on the planet – Michael Brooks argues that the things we don’t understand are the key to what we are about to discover.This mind-boggling but entirely accessible survey of the outer limits of human knowledge is based on a short article by Michael Brooks for New Scientist magazine. It became the sixth most circulated story on the internet in 2005, and provoked widespread comment and compliments (Google “13 things that do not make sense” to see).Michael Brooks has now dug deeply into those mysteries, with extraordinary results.

The Simpsons and Their Mathematical Secrets


Simon Singh - 2013
    That they exist, Simon Singh reveals, underscores the brilliance of the shows' writers, many of whom have advanced degrees in mathematics in addition to their unparalleled sense of humor. While recounting memorable episodes such as “Bart the Genius” and “Homer3,” Singh weaves in mathematical stories that explore everything from p to Mersenne primes, Euler's equation to the unsolved riddle of P v. NP; from perfect numbers to narcissistic numbers, infinity to even bigger infinities, and much more. Along the way, Singh meets members of The Simpsons' brilliant writing team-among them David X. Cohen, Al Jean, Jeff Westbrook, and Mike Reiss-whose love of arcane mathematics becomes clear as they reveal the stories behind the episodes. With wit and clarity, displaying a true fan's zeal, and replete with images from the shows, photographs of the writers, and diagrams and proofs, The Simpsons and Their Mathematical Secrets offers an entirely new insight into the most successful show in television history.

How to Build a Brain and 34 Other Really Interesting Uses of Maths


Richard Elwes - 2010
    You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100


Michio Kaku - 2011
    The result is the most authoritative and scientifically accurate description of the revolutionary developments taking place in medicine, computers, artificial intelligence, nanotechnology, energy production, and astronautics.In all likelihood, by 2100 we will control computers via tiny brain sensors and, like magicians, move objects around with the power of our minds. Artificial intelligence will be dispersed throughout the environment, and Internet-enabled contact lenses will allow us to access the world's information base or conjure up any image we desire in the blink of an eye.Meanwhile, cars will drive themselves using GPS, and if room-temperature superconductors are discovered, vehicles will effortlessly fly on a cushion of air, coasting on powerful magnetic fields and ushering in the age of magnetism.Using molecular medicine, scientists will be able to grow almost every organ of the body and cure genetic diseases. Millions of tiny DNA sensors and nanoparticles patrolling our blood cells will silently scan our bodies for the first sign of illness, while rapid advances in genetic research will enable us to slow down or maybe even reverse the aging process, allowing human life spans to increase dramatically.In space, radically new ships—needle-sized vessels using laser propulsion—could replace the expensive chemical rockets of today and perhaps visit nearby stars. Advances in nanotechnology may lead to the fabled space elevator, which would propel humans hundreds of miles above the earth's atmosphere at the push of a button.But these astonishing revelations are only the tip of the iceberg. Kaku also discusses emotional robots, antimatter rockets, X-ray vision, and the ability to create new life-forms, and he considers the development of the world economy. He addresses the key questions: Who are the winner and losers of the future? Who will have jobs, and which nations will prosper?All the while, Kaku illuminates the rigorous scientific principles, examining the rate at which certain technologies are likely to mature, how far they can advance, and what their ultimate limitations and hazards are. Synthesizing a vast amount of information to construct an exciting look at the years leading up to 2100, Physics of the Future is a thrilling, wondrous ride through the next 100 years of breathtaking scientific revolution. (From the Hardcover Edition)(Duration: 15:39:15)

Gray's Anatomy


Henry Gray - 1858
    About The Author: Henry Gray, F.R.S., Fellow of the royal college of Surgeons: Lecturer on anatomy at St. George?s Hospital Medical School. Table Of Contents: Descriptive and Surgical Anatomy The Articulations Muscles and Fasclae The Blood-vascular system The Lymphatics The Nervous system The Organs of special sense The Organs of Digestion The Organs of voice and respiration The urinary organs The Male Organs of Generation The Female Organs of Generation The Surgical Anatomy of Hernia Surgical Anatomy of the Perinaeum General Anatomy or Histology Embryology

Introducing Relativity: A Graphic Guide


Bruce Bassett - 2002
    Beginning near the speed of light and proceeding to explorations of space-time and curved spaces, "Introducing Relativity" plots a visually accessible course through the thought experiments that have given shape to contemporary physics. Scientists from Newton to Hawking add their unique contributions to this story, as we encounter Einstein's astounding vision of gravity as the curvature of space-time and arrive at the breathtakingly beautiful field equations. Einstein's legacy is reviewed in the most advanced frontiers of physics today - black holes, gravitational waves, the accelerating universe and string theory. This is a superlative, fascinating graphic account of Einstein's strange world and how his legacy has been built upon since.

The Te of Piglet


Benjamin Hoff - 1992
    A. Milne's Piglet. Piglet? Yes, Piglet. For better than impulsive Tigger... or gloomy Eeyore... or intellectual Owl... or even loveable Pooh... Piglet herein demonstrates a very important principle of Taoism: the Te - a Chinese word meaning Virtue - of the Small.In this wonderful sequel to The Tao of Pooh, Benjamin Hoff explores the Te (Virtue) of the Small - a principle embodied perfectly in Piglet, a Very Small Animal who proved to be so Useful after all.

50 Mathematical Ideas You Really Need to Know


Tony Crilly - 2007
    Who invented zero? Why are there 60 seconds in a minute? Can a butterfly's wings really cause a storm on the far side of the world? In 50 concise essays, Professor Tony Crilly explains the mathematical concepts that allow use to understand and shape the world around us.

Things to Make and Do in the Fourth Dimension


Matt Parker - 2014
    This book can be cut, drawn in, folded into shapes and will even take you to the fourth dimension. So join stand-up mathematician Matt Parker on a journey through narcissistic numbers, optimal dating algorithms, at least two different kinds of infinity and more.

The Science of Interstellar


Kip S. Thorne - 2014
    Yet in The Science of Interstellar, Kip Thorne, the physicist who assisted Nolan on the scientific aspects of Interstellar, shows us that the movie’s jaw-dropping events and stunning, never-before-attempted visuals are grounded in real science. Thorne shares his experiences working as the science adviser on the film and then moves on to the science itself. In chapters on wormholes, black holes, interstellar travel, and much more, Thorne’s scientific insights—many of them triggered during the actual scripting and shooting of Interstellar—describe the physical laws that govern our universe and the truly astounding phenomena that those laws make possible.Interstellar and all related characters and elements are trademarks of and © Warner Bros. Entertainment Inc. (s14).

Simply Einstein: Relativity Demystified


Richard Wolfson - 2002
    Drawing from years of teaching modern physics to nonscientists, Wolfson explains in a lively, conversational style the simple principles underlying Einstein's theory.Relativity, Wolfson shows, gave us a new view of space and time, opening the door to questions about their flexible nature: Is the universe finite or infinite? Will it expand forever or eventually collapse in a "big crunch"? Is time travel possible? What goes on inside a black hole? How does gravity really work? These questions at the forefront of twenty-first-century physics are all rooted in the profound and sweeping vision of Albert Einstein's early twentieth-century theory. Wolfson leads his readers on an intellectual journey that culminates in a universe made almost unimaginably rich by the principles that Einstein first discovered.

What If the Earth Had Two Moons?: And Nine Other Thought-Provoking Speculations on the Solar System


Neil F. Comins - 2010
    In What If the Earth Had Two Moons, Neil Comins leads us on a fascinating ten-world journey as we explore what our planet would be like under alternative astronomical conditions. In each case, the Earth would be different, often in surprising ways. The title chapter, for example, gives us a second moon orbiting closer to Earth than the one we have now. The night sky is a lot brighter, but that won't last forever. Eventually the moons collide, with one extra-massive moon emerging after a period during which Earth sports a Saturn-like ring. This and nine and other speculative essays provide us with insights into the Earth as it exists today, while shedding new light on the burgeoning search for life on planets orbiting other stars. Appealing to adult and young adult readers alike, this book follows on the author's previous bestseller, What If the Moon Didn't Exist?, with completely new scenarios backed by the latest astronomical research.