Book picks similar to
The Ethical Algorithm: The Science of Socially Aware Algorithm Design by Michael Kearns
non-fiction
tech
technology
nonfiction
Data Mining: Practical Machine Learning Tools and Techniques
Ian H. Witten - 1999
This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915 0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)
Algorithms
Robert Sedgewick - 1983
This book surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use.The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts.The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants.Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement
Eric Redmond - 2012
As a modern application developer you need to understand the emerging field of data management, both RDBMS and NoSQL. Seven Databases in Seven Weeks takes you on a tour of some of the hottest open source databases today. In the tradition of Bruce A. Tate's Seven Languages in Seven Weeks, this book goes beyond your basic tutorial to explore the essential concepts at the core each technology. Redis, Neo4J, CouchDB, MongoDB, HBase, Riak and Postgres. With each database, you'll tackle a real-world data problem that highlights the concepts and features that make it shine. You'll explore the five data models employed by these databases-relational, key/value, columnar, document and graph-and which kinds of problems are best suited to each. You'll learn how MongoDB and CouchDB are strikingly different, and discover the Dynamo heritage at the heart of Riak. Make your applications faster with Redis and more connected with Neo4J. Use MapReduce to solve Big Data problems. Build clusters of servers using scalable services like Amazon's Elastic Compute Cloud (EC2). Discover the CAP theorem and its implications for your distributed data. Understand the tradeoffs between consistency and availability, and when you can use them to your advantage. Use multiple databases in concert to create a platform that's more than the sum of its parts, or find one that meets all your needs at once.Seven Databases in Seven Weeks will take you on a deep dive into each of the databases, their strengths and weaknesses, and how to choose the ones that fit your needs.What You Need: To get the most of of this book you'll have to follow along, and that means you'll need a *nix shell (Mac OSX or Linux preferred, Windows users will need Cygwin), and Java 6 (or greater) and Ruby 1.8.7 (or greater). Each chapter will list the downloads required for that database.
Turing's Cathedral: The Origins of the Digital Universe
George Dyson - 2012
In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time. How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.
From Mathematics to Generic Programming
Alexander A. Stepanov - 2014
If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge
Grouped: How Small Groups of Friends Are the Key to Influence on the Social Web
Paul Adams - 2011
It is moving away from its current structure of documents and pages linked together, and towards a new structure that is built around people. This is a profound change that will affect how we create business strategy, design, marketing, and advertising. The reason for this shift is simple. For tens of thousands of years we've been social animals. The web, which is only 20 years old, is simply catching up with offline life.From travel to news to commerce, smart businesses are reorienting their efforts around people-around the social behavior of their customers and potential customers. In order to be successful, businesses will need to understand how people are connected, how their social network influences them, how the people closest to them influence them the most, and how it's more important for marketers to focus on small, connected groups of friends rather than looking for overly influential individuals.This book pulls together the latest research from leading universities and technology companies to describe how people are connected, and how ideas and brand messages spread through social networks. It shows readers how to rebuild their business around social behavior, and create products that people tell their friends about.
Programmers at Work: Interviews With 19 Programmers Who Shaped the Computer Industry (Tempus)
Susan Lammers - 1986
A classic title on the PC revolution originally published in 1986. Featuring Bill Gates, Andy Hertzfeld, Charles Simonyi, Ray Ozzie, Michael Hawley and many more.
Human + Machine: Reimagining Work in the Age of AI
Paul R. Daugherty - 2018
Are you ready?
Look around you. Artificial intelligence is no longer just a futuristic notion. It's here right now--in software that senses what we need, supply chains that "think" in real time, and robots that respond to changes in their environment. Twenty-first-century pioneer companies are already using AI to innovate and grow fast. The bottom line is this: Businesses that understand how to harness AI can surge ahead. Those that neglect it will fall behind. Which side are you on?In Human + Machine, Accenture leaders Paul R. Daugherty and H. James (Jim) Wilson show that the essence of the AI paradigm shift is the transformation of all business processes within an organization--whether related to breakthrough innovation, everyday customer service, or personal productivity habits. As humans and smart machines collaborate ever more closely, work processes become more fluid and adaptive, enabling companies to change them on the fly--or to completely reimagine them. AI is changing all the rules of how companies operate.Based on the authors' experience and research with 1,500 organizations, the book reveals how companies are using the new rules of AI to leap ahead on innovation and profitability, as well as what you can do to achieve similar results. It describes six entirely new types of hybrid human + machine roles that every company must develop, and it includes a "leader’s guide" with the five crucial principles required to become an AI-fueled business.Human + Machine provides the missing and much-needed management playbook for success in our new age of AI.
Clean Code: A Handbook of Agile Software Craftsmanship
Robert C. Martin - 2007
But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.
Data Science For Dummies
Lillian Pierson - 2014
Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
Introduction to Machine Learning with Python: A Guide for Data Scientists
Andreas C. Müller - 2015
If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills
JavaScript: The Good Parts
Douglas Crockford - 2008
This authoritative book scrapes away these bad features to reveal a subset of JavaScript that's more reliable, readable, and maintainable than the language as a whole--a subset you can use to create truly extensible and efficient code.Considered the JavaScript expert by many people in the development community, author Douglas Crockford identifies the abundance of good ideas that make JavaScript an outstanding object-oriented programming language-ideas such as functions, loose typing, dynamic objects, and an expressive object literal notation. Unfortunately, these good ideas are mixed in with bad and downright awful ideas, like a programming model based on global variables.When Java applets failed, JavaScript became the language of the Web by default, making its popularity almost completely independent of its qualities as a programming language. In JavaScript: The Good Parts, Crockford finally digs through the steaming pile of good intentions and blunders to give you a detailed look at all the genuinely elegant parts of JavaScript, including:SyntaxObjectsFunctionsInheritanceArraysRegular expressionsMethodsStyleBeautiful featuresThe real beauty? As you move ahead with the subset of JavaScript that this book presents, you'll also sidestep the need to unlearn all the bad parts. Of course, if you want to find out more about the bad parts and how to use them badly, simply consult any other JavaScript book.With JavaScript: The Good Parts, you'll discover a beautiful, elegant, lightweight and highly expressive language that lets you create effective code, whether you're managing object libraries or just trying to get Ajax to run fast. If you develop sites or applications for the Web, this book is an absolute must.
The Complete Software Developer's Career Guide: How to Learn Programming Languages Quickly, Ace Your Programming Interview, and Land Your Software Developer Dream Job
John Z. Sonmez - 2017
As John invested in these skills his career took off, and he became a highly paid, highly sought-after developer and consultant. Today John helps more than 1.4 million programmers every year to increase their income by developing this unique blend of skills.
"If you're a developer, green or a veteran, you owe it to yourself to read The Complete Software Developers Career Guide." - Jason Down, Platform Developer, Ontario, Canada
What You Will Learn in This Book How to systematically find and fill the gaps in your technical knowledge so you can face any new challenge with confidence Should you take contract work - or hold out for a salaried position? Which will earn you more, what the tradeoffs are, and how your personality should sway your choice Should you learn JavaScript, C#, Python, C++? How to decide which programming language you should master first Ever notice how every job ever posted requires "3-5 years of experience," which you don't have? Simple solution for this frustrating chicken-and-egg problem that allows you to build legitimate job experience while you learn to code Is earning a computer science degree a necessity - or a total waste of time? How to get a college degree with maximum credibility and minimum debt Coding bootcampssome are great, some are complete scams. How to tell the difference so you don't find yourself cheated out of $10,000 Interviewer tells you, "Dress code is casual around here - the development team wears flipflops." What should you wear? How do you deal with a boss who's a micromanager. Plus how helping your manager with his goals can make you the MVP of your team The technical skills that every professional developer must have - but no one teaches you (most developers are missing some critical pieces, they don't teach this stuff in college, you're expected to just "know" this) An inside look at the recruiting industry. What that "friendly" recruiter really wants from you, how they get paid, and how to avoid getting pigeonholed into a job you'll hate Who Should Read This Book Entry-Level Developers This book will show you how to ensure you have the technical skills your future boss is looking for, create a resume that leaps off a hiring manager's desk, and escape the "no work experience" trap. Mid-Career Developers You'll see how to find and fill in gaps in your technical knowledge, position yourself as the one team member your boss can't live without, and turn those dreaded annual reviews into chance to make an iron-clad case for your salary bump. Senior Developers This book will show you how to become a specialist who can command above-market wages, how building a name for yourself can make opportunities come to you, and how to decide whether consulting or entrepreneurship are paths you should pursue.
Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software
Scott Rosenberg - 2007
Along the way, we encounter black holes, turtles, snakes, dragons, axe-sharpening, and yak-shaving—and take a guided tour through the theories and methods, both brilliant and misguided, that litter the history of software development, from the famous ‘mythical man-month’ to Extreme Programming. Not just for technophiles but for anyone captivated by the drama of invention, Dreaming in Code offers a window into both the information age and the workings of the human mind.