Book picks similar to
Algorithms on Strings by Maxime Crochemore


stringology
algorithms
software
computer-science

Patterns of Software: Tales from the Software Community


Richard P. Gabriel - 1996
    But while most of us today can work a computer--albeit with the help of the ever-present computer software manual--we know little about what goes on inside the box and virtually nothing about software designor the world of computer programming. In Patterns of Software, the respected software pioneer and computer scientist, Richard Gabriel, gives us an informative inside look at the world of software design and computer programming and the business that surrounds them. In this wide-ranging volume, Gabriel discusses such topics as whatmakes a successful programming language, how the rest of the world looks at and responds to the work of computer scientists, how he first became involved in computer programming and software development, what makes a successful software business, and why his own company, Lucid, failed in 1994, tenyears after its inception. Perhaps the most interesting and enlightening section of the book is Gabriel's detailed look at what he believes are the lessons that can be learned from architect Christopher Alexander, whose books--including the seminal A Pattern Language--have had a profound influence on the computer programmingcommunity. Gabriel illuminates some of Alexander's key insights--the quality without a name, pattern languages, habitability, piecemeal growth--and reveals how these influential architectural ideas apply equally well to the construction of a computer program. Gabriel explains the concept ofhabitability, for example, by comparing a program to a New England farmhouse and the surrounding structures which slowly grow and are modified according to the needs and desires of the people who live and work on the farm. Programs live and grow, and their inhabitants--the programmers--need to workwith that program the way the farmer works with the homestead. Although computer scientists and software entrepreneurs will get much out of this book, the essays are accessible to everyone and will intrigue anyone curious about Silicon Valley, computer programming, or the world of high technology.

Make Your Own Neural Network


Tariq Rashid - 2016
     Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Engineering a Compiler


Keith D. Cooper - 2003
    No longer is execution speed the sole criterion for judging compiled code. Today, code might be judged on how small it is, how much power it consumes, how well it compresses, or how many page faults it generates. In this evolving environment, the task of building a successful compiler relies upon the compiler writer's ability to balance and blend algorithms, engineering insights, and careful planning. Today's compiler writer must choose a path through a design space that is filled with diverse alternatives, each with distinct costs, advantages, and complexities.Engineering a Compiler explores this design space by presenting some of the ways these problems have been solved, and the constraints that made each of those solutions attractive. By understanding the parameters of the problem and their impact on compiler design, the authors hope to convey both the depth of the problems and the breadth of possible solutions. Their goal is to cover a broad enough selection of material to show readers that real tradeoffs exist, and that the impact of those choices can be both subtle and far-reaching.Authors Keith Cooper and Linda Torczon convey both the art and the science of compiler construction and show best practice algorithms for the major passes of a compiler. Their text re-balances the curriculum for an introductory course in compiler construction to reflect the issues that arise in current practice.

Refactoring to Patterns


Joshua Kerievsky - 2004
    In 1999, "Refactoring" revolutionized design by introducing an effective process for improving code. With the highly anticipated " Refactoring to Patterns ," Joshua Kerievsky has changed our approach to design by forever uniting patterns with the evolutionary process of refactoring.This book introduces the theory and practice of pattern-directed refactorings: sequences of low-level refactorings that allow designers to safely move designs to, towards, or away from pattern implementations. Using code from real-world projects, Kerievsky documents the thinking and steps underlying over two dozen pattern-based design transformations. Along the way he offers insights into pattern differences and how to implement patterns in the simplest possible ways.Coverage includes: A catalog of twenty-seven pattern-directed refactorings, featuring real-world code examples Descriptions of twelve design smells that indicate the need for this book s refactorings General information and new insights about patterns and refactoringDetailed implementation mechanics: how low-level refactorings are combined to implement high-level patterns Multiple ways to implement the same pattern and when to use each Practical ways to get started even if you have little experience with patterns or refactoring"Refactoring to Patterns" reflects three years of refinement and the insights of more than sixty software engineering thought leaders in the global patterns, refactoring, and agile development communities. Whether you re focused on legacy or greenfield development, this book will make you a better software designer by helping you learn how to make important design changes safely and effectively. "

Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.

Programming Ruby: The Pragmatic Programmers' Guide


Dave Thomas - 2000
    When Ruby first burst onto the scene in the Western world, the Pragmatic Programmers were there with the definitive reference manual, Programming Ruby: The Pragmatic Programmer's Guide.Now in its second edition, author Dave Thomas has expanded the famous Pickaxe book with over 200 pages of new content, covering all the improved language features of Ruby 1.8 and standard library modules. The Pickaxe contains four major sections:An acclaimed tutorial on using Ruby.The definitive reference to the language.Complete documentation on all built-in classes, modules, and methodsComplete descriptions of all 98 standard libraries.If you enjoyed the First Edition, you'll appreciate the expanded content, including enhanced coverage of installation, packaging, documenting Ruby source code, threading and synchronization, and enhancing Ruby's capabilities using C-language extensions. Programming for the World Wide Web is easy in Ruby, with new chapters on XML/RPC, SOAP, distributed Ruby, templating systems, and other web services. There's even a new chapter on unit testing.This is the definitive reference manual for Ruby, including a description of all the standard library modules, a complete reference to all built-in classes and modules (including more than 250 significant changes since the First Edition). Coverage of other features has grown tremendously, including details on how to harness the sophisticated capabilities of irb, so you can dynamically examine and experiment with your running code. Ruby is a wonderfully powerful and useful language, and whenever I'm working with it this book is at my side --Martin Fowler, Chief Scientist, ThoughtWorks

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Introduction to the Design and Analysis of Algorithms


Anany V. Levitin - 2002
    KEY TOPICS: Written in a reader-friendly style, the book encourages broad problem-solving skills while thoroughly covering the material required for introductory algorithms. The author emphasizes conceptual understanding before the introduction of the formal treatment of each technique. Popular puzzles are used to motivate readers' interest and strengthen their skills in algorithmic problem solving. Other enhancement features include chapter summaries, hints to the exercises, and a solution manual. MARKET: For those interested in learning more about algorithms.

Refactoring: Improving the Design of Existing Code


Martin Fowler - 1999
    Significant numbers of poorly designed programs have been created by less-experienced developers, resulting in applications that are inefficient and hard to maintain and extend. Increasingly, software system professionals are discovering just how difficult it is to work with these inherited, non-optimal applications. For several years, expert-level object programmers have employed a growing collection of techniques to improve the structural integrity and performance of such existing software programs. Referred to as refactoring, these practices have remained in the domain of experts because no attempt has been made to transcribe the lore into a form that all developers could use... until now. In Refactoring: Improving the Design of Existing Software, renowned object technology mentor Martin Fowler breaks new ground, demystifying these master practices and demonstrating how software practitioners can realize the significant benefits of this new process.

Computer Architecture: A Quantitative Approach


John L. Hennessy - 2006
    Today, Intel and other semiconductor firms are abandoning the single fast processor model in favor of multi-core microprocessors--chips that combine two or more processors in a single package. In the fourth edition of "Computer Architecture," the authors focus on this historic shift, increasing their coverage of multiprocessors and exploring the most effective ways of achieving parallelism as the key to unlocking the power of multiple processor architectures. Additionally, the new edition has expanded and updated coverage of design topics beyond processor performance, including power, reliability, availability, and dependability. CD System Requirements"PDF Viewer"The CD material includes PDF documents that you can read with a PDF viewer such as Adobe, Acrobat or Adobe Reader. Recent versions of Adobe Reader for some platforms are included on the CD. "HTML Browser"The navigation framework on this CD is delivered in HTML and JavaScript. It is recommended that you install the latest version of your favorite HTML browser to view this CD. The content has been verified under Windows XP with the following browsers: Internet Explorer 6.0, Firefox 1.5; under Mac OS X (Panther) with the following browsers: Internet Explorer 5.2, Firefox 1.0.6, Safari 1.3; and under Mandriva Linux 2006 with the following browsers: Firefox 1.0.6, Konqueror 3.4.2, Mozilla 1.7.11. The content is designed to be viewed in a browser window that is at least 720 pixels wide. You may find the content does not display well if your display is not set to at least 1024x768 pixel resolution. "Operating System"This CD can be used under any operating system that includes an HTML browser and a PDF viewer. This includes Windows, Mac OS, and most Linux and Unix systems. Increased coverage on achieving parallelism with multiprocessors. Case studies of latest technology from industry including the Sun Niagara Multiprocessor, AMD Opteron, and Pentium 4. Three review appendices, included in the printed volume, review the basic and intermediate principles the main text relies upon. Eight reference appendices, collected on the CD, cover a range of topics including specific architectures, embedded systems, application specific processors--some guest authored by subject experts.

The Mythical Man-Month: Essays on Software Engineering


Frederick P. Brooks Jr. - 1975
    With a blend of software engineering facts and thought-provoking opinions, Fred Brooks offers insight for anyone managing complex projects. These essays draw from his experience as project manager for the IBM System/360 computer family and then for OS/360, its massive software system. Now, 45 years after the initial publication of his book, Brooks has revisited his original ideas and added new thoughts and advice, both for readers already familiar with his work and for readers discovering it for the first time.The added chapters contain (1) a crisp condensation of all the propositions asserted in the original book, including Brooks' central argument in The Mythical Man-Month: that large programming projects suffer management problems different from small ones due to the division of labor; that the conceptual integrity of the product is therefore critical; and that it is difficult but possible to achieve this unity; (2) Brooks' view of these propositions a generation later; (3) a reprint of his classic 1986 paper "No Silver Bullet"; and (4) today's thoughts on the 1986 assertion, "There will be no silver bullet within ten years."

R for Everyone: Advanced Analytics and Graphics


Jared P. Lander - 2013
    R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you'll need to accomplish 80 percent of modern data tasks. Lander's self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You'll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you'll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you're done, you won't just know how to write R programs, you'll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES - Exploring R, RStudio, and R packages - Using R for math: variable types, vectors, calling functions, and more - Exploiting data structures, including data.frames, matrices, and lists - Creating attractive, intuitive statistical graphics - Writing user-defined functions - Controlling program flow with if, ifelse, and complex checks - Improving program efficiency with group manipulations - Combining and reshaping multiple datasets - Manipulating strings using R's facilities and regular expressions - Creating normal, binomial, and Poisson probability distributions - Programming basic statistics: mean, standard deviation, and t-tests - Building linear, generalized linear, and nonlinear models - Assessing the quality of models and variable selection - Preventing overfitting, using the Elastic Net and Bayesian methods - Analyzing univariate and multivariate time series data - Grouping data via K-means and hierarchical clustering - Preparing reports, slideshows, and web pages with knitr - Building reusable R packages with devtools and Rcpp - Getting involved with the R global community

The Passionate Programmer


Chad Fowler - 2009
    In this book, you'll learn how to become an entrepreneur, driving your career in the direction of your choosing. You'll learn how to build your software development career step by step, following the same path that you would follow if you were building, marketing, and selling a product. After all, your skills themselves are a product. The choices you make about which technologies to focus on and which business domains to master have at least as much impact on your success as your technical knowledge itself--don't let those choices be accidental. We'll walk through all aspects of the decision-making process, so you can ensure that you're investing your time and energy in the right areas. You'll develop a structured plan for keeping your mind engaged and your skills fresh. You'll learn how to assess your skills in terms of where they fit on the value chain, driving you away from commodity skills and toward those that are in high demand. Through a mix of high-level, thought-provoking essays and tactical "Act on It" sections, you will come away with concrete plans you can put into action immediately. You'll also get a chance to read the perspectives of several highly successful members of our industry from a variety of career paths. As with any product or service, if nobody knows what you're selling, nobody will buy. We'll walk through the often-neglected world of marketing, and you'll create a plan to market yourself both inside your company and to the industry in general. Above all, you'll see how you can set the direction of your career, leading to a more fulfilling and remarkable professional life.

Site Reliability Engineering: How Google Runs Production Systems


Betsy Beyer - 2016
    So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems?In this collection of essays and articles, key members of Google's Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You'll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient--lessons directly applicable to your organization.This book is divided into four sections: Introduction--Learn what site reliability engineering is and why it differs from conventional IT industry practicesPrinciples--Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE)Practices--Understand the theory and practice of an SRE's day-to-day work: building and operating large distributed computing systemsManagement--Explore Google's best practices for training, communication, and meetings that your organization can use