Artificial Intelligence: A Modern Approach


Stuart Russell - 1994
    The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa

UML Distilled: A Brief Guide to the Standard Object Modeling Language


Martin Fowler - 1997
    This third edition is the best resource for quick, no-nonsense insights into understanding and using UML 2.0 and prior versions of the UML. Some readers will want to quickly get up to speed with the UML 2.0 and learn the essentials of the UML. Others will use this book as a handy, quick reference to the most common parts of the UML. The author delivers on both of these promises in a short, concise, and focused presentation. This book describes all the major UML diagram types, what they're used for, and the basic notation involved in creating and deciphering them. These diagrams include class, sequence, object, package, deployment, use case, state machine, activity, communication, composite structure, component, interaction overview, and timing diagrams. The examples are clear and the explanations cut to the fundamental design logic. Includes a quick reference to the most useful parts of the UML notation and a useful summary of diagram types that were added to the UML 2.0. If you are like most developers, you don't have time to keep up with all the new innovations in software engineering. This new edition of Fowler's classic work gets you acquainted with some of the best thinking about efficient object-oriented software design using the UML--in a convenient format that will be essential to anyone who designs software professionally.

Dont Make Me Think (Blinkist Summaries)


Blinkist
    Witty, commonsensical, and eminently practical, it’s one of the best-loved and most recommended books on the subject.In this 3rd edition, Steve returns with fresh perspective to reexamine the principles that made Don’t Make Me Think a classic-–with updated examples and a new chapter on mobile usability. And it’s still short, profusely illustrated…and best of all–fun to read.If you’ve read it before, you’ll rediscover what made Don’t Make Me Think so essential to Web designers and developers around the world. If you’ve never read it, you’ll see why so many people have said it should be required reading for anyone working on Web sites.

Head First Python


Paul Barry - 2010
    You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you.We think your time is too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Python uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

Fundamentals of Building Construction: Materials and Methods


Edward Allen - 1986
    The best-selling reference focuses on the basic materials and methods used in building construction. Emphasizing common construction systems such as light wood frames, masonry bearing walls, steel frames, and reinforced concrete, the new edition includes new coverage of green design and energy-efficient construction energies, and is based on the International Building Code(r).

Exam Ref 70-486: Developing ASP.NET MVC 4 Web Applications


William Penberthy - 2013
    Designed for experienced developers ready to advance their status, Exam Ref focuses on the critical-thinking and decision-making acumen needed for success at the Microsoft Specialist level.Focus on the expertise measured by these objectives:Design the application architectureDesign the user experienceDevelop the user experienceTroubleshoot and debug web applicationsDesign and implement securityThis Microsoft Exam Ref:Organizes its coverage by exam objectives.Features strategic, what-if scenarios to challenge you.Includes a 15% exam discount from Microsoft. (Limited time offer)

Data Analysis Using Regression and Multilevel/Hierarchical Models


Andrew Gelman - 2006
    The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: http: //www.stat.columbia.edu/ gelman/arm/

Elementary Linear Algebra with Applications


Bernard Kolman - 1995
    It offers a fine balance between abstraction/theory and computational skills, and gives readers an excellent opportunity to learn how to handle abstract concepts. Included in this comprehensive and easy-to-follow manual are these topics: linear equations and matrices; solving linear systems; real vector spaces; inner product spaces; linear transformations and matrices; determinants; eigenvalues and eigenvectors; differential equations; and MATLAB for linear algebra. Because this book gives real applications for linear algebraic basic ideas and computational techniques, it is useful as a reference work for mathematicians and those in field of computer science.

Real World Java EE Patterns--Rethinking Best Practices


Adam Bien - 2009
    :-)

Doing Data Science


Cathy O'Neil - 2013
    But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Programming Windows 8 Apps with HTML, CSS, and JavaScript


Kraig Brockschmidt - 2012
    

Statistics for Psychology


Arthur Aron - 1993
    This approach constantly reminds students of the logic behind what they are learning, and each procedure is taught both verbally and numerically, which helps to emphasize the concepts. Thoroughly revised, with new content and many new practice examples, this text takes the reader from basic procedures through analysis of variance (ANOVA). Students cover statistics and also learn to read and inderstand research articles. - SPSS examplesincluded with each procedure - Dozens of examples updated (especially the in-the-research-literature ones) - Reorganization - The self-contained chapters on correlation and regression have been moved after t-test and analysis of variance - Emphasis on definitional formulas - As opposed to computational formulas - Practical, up-to-date excerpts - For each procedure, the text explains how results are described in research articles. example being described in each way - Interesting examples throughout - Often include studies of or by researchers of diverse ethnicities - Complete package of ancillary materials - A web page with additional practice problems and extensive interactive study materials, plus four mini chapters covering additional material not in the text, a very substantial test bank; an instructors' manual that provides sample syllabi, lecture outlines, and ready-to-copy (or download) power-point slides or transparencies with examples not in the book; and a very complete students' study guide that also provides a thorough workbook for using SPSS with this book.

R Programming for Data Science


Roger D. Peng - 2015
    

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.