Book picks similar to
Modeling Survival Data: Extending the Cox Model by Terry M. Therneau


statistics
computer-science
livros-científicos
statistics-probability

Statistical Rethinking: A Bayesian Course with Examples in R and Stan


Richard McElreath - 2015
    Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

The Hundred-Page Machine Learning Book


Andriy Burkov - 2019
    During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Learning From Data: A Short Course


Yaser S. Abu-Mostafa - 2012
    Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

CCENT/CCNA ICND1 100-105 Official Cert Guide


Wendell Odom - 2016
    They are built with the objective of providing assessment, review, and practice to help ensure you are fully prepared for your certification exam. Master Cisco CCENT/CCNA ICND1 100-105 exam topics Assess your knowledge with chapter-opening quizzes Review key concepts with exam preparation tasks This is the eBook edition of the CCENT/CCNA ICND1 100-105 Official Cert Guide. This eBook does not include the companion CD-ROM with practice exam that comes with the print edition.   CCENT/CCNA ICND1 100-105 Official Cert Guide presents you with an organized test-preparation routine through the use of proven series elements and techniques. “Do I Know This Already?” quizzes open each chapter and enable you to decide how much time you need to spend on each section. Exam topic lists make referencing easy. Chapter-ending Exam Preparation Tasks help you drill on key concepts you must know thoroughly.   CCENT/CCNA ICND1 100-105 Official Cert Guide from Cisco Press enables you to succeed on the exam the first time and is the only self-study resource approved by Cisco. Best-selling author and expert instructor Wendell Odom shares preparation hints and test-taking tips, helping you identify areas of weakness and improve both your conceptual knowledge and hands-on skills.   This complete study package includes   ·         A test-preparation routine proven to help you pass the exams ·         Do I Know This Already? quizzes, which enable you to decide how much time you need to spend on each section ·         Chapter-ending and part-ending exercises, which help you drill on key concepts you must know thoroughly ·         Troubleshooting sections, which help you master the complex scenarios you will face on the exam ·         A free copy of the CCENT ICND1 100-105 Network Simulator Lite software, complete with meaningful lab exercises that help you hone your hands-on skills with the command-line interface for routers and switches ·         Links to a series of hands-on config labs developed by the author ·         Online, interactive practice exercises that help you hone your knowledge ·         More than 90 minutes of video mentoring from the author ·         A final preparation chapter, which guides you through tools and resources to help you craft your review and test-taking strategies ·         Study plan suggestions and templates to help you organize and optimize your study time   Well regarded for its level of detail, study plans, assessment features, challenging review questions and exercises, video instruction, and hands-on labs, this official study guide helps you master the concepts and techniques that ensure your exam success.   This official study guide helps you master all the topics on the CCENT/CCNA ICND1 exam, including ·         Networking fundamentals ·         Implementing basic Ethernet LANs ·         Ethernet LANs: design, VLANs, and troubleshooting ·         IPv4 addressing and subnetting ·         Implementing IPv4 ·         IPv4 design and troubleshooting ...

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Rational Choice in an Uncertain World: The Psychology of Judgement and Decision Making


Reid Hastie - 1988
    They describe theories and research finding from the field of judgement and decision making in a non-technical manner, using anecdotes as a teaching device. Intended as an introductory textbook for advanced undergraduate and graduate students, the material not only is of scholarly interest but is practical as well.

Doing Data Science


Cathy O'Neil - 2013
    But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Microbiology: Principles and Explorations


Jacquelyn G. Black - 1992
    Phages are also being used to detect and remove pathogens from our food supplies, both plant and animal. Also exciting is the use of phages as vehicles to delivery DNA vaccines, often directly to mammalian immune system cells. Recent work also suggests possible antitumor effects of phages. We stand on the edge of a whole new world of exploration and applications of microbiology. For over 20 years, and through five editions, Black's Microbiology: Principles and Explorations has captured students' imaginations. Her enthusiasm, passion, and knack for memorable stories and anecdotes bring the study of microbiology to life in a way few other texts can match. Now updated to reflect the latest topics in the field (e.g., SARS, bioterrorism, GMO's, geomicrobiology) and accompanied by state-of-the-art animations of key concepts, this new edition is sure to help inspire a new generation of enthusiasts for the dynamic science of microbiology. Critical Acclaim "I continue to find Black's text an excellent contribution to undergraduate Microbiology education." --Karen Messley, Rock Valley College "I like the conversational and informal style Black adopts throughout the book. This is a book, which could very well engage even the most reluctant student. It is comprehensive, nicely detailed, and incorporates many aids to teaching and learning..."--Iris Cook, Westchester CC "[The text] is a wonderful introduction into the world of microorganisms for students from a wide variety of backgrounds."--Jeff G. Leid, Northern Arizona University ..".I have found it [the book] accurate to a fault, brilliant at getting students motivated and interested in microbiology, and a great practical training book."--Gerard O'Donovan, University of North Texas Also available Laboratory Exercises in Microbiology, 2nd Edition Robert A. Pollack, et al. ISBN: 0-471-42082-4, 264 pages, paper, (c)2005 Written specifically for allied health students, this lab manual presents a variety of highly engaging activities and experiments that convey the basic concepts of microbiology.

Social and Economic Networks


Matthew O. Jackson - 2008
    The many aspects of our lives that are governed by social networks make it critical to understand how they impact behavior, which network structures are likely to emerge in a society, and why we organize ourselves as we do. In Social and Economic Networks, Matthew Jackson offers a comprehensive introduction to social and economic networks, drawing on the latest findings in economics, sociology, computer science, physics, and mathematics. He provides empirical background on networks and the regularities that they exhibit, and discusses random graph-based models and strategic models of network formation. He helps readers to understand behavior in networked societies, with a detailed analysis of learning and diffusion in networks, decision making by individuals who are influenced by their social neighbors, game theory and markets on networks, and a host of related subjects. Jackson also describes the varied statistical and modeling techniques used to analyze social networks. Each chapter includes exercises to aid students in their analysis of how networks function.This book is an indispensable resource for students and researchers in economics, mathematics, physics, sociology, and business.

Problem Solving with Algorithms and Data Structures Using Python


Bradley N. Miller - 2005
    It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Storytelling with Data: A Data Visualization Guide for Business Professionals


Cole Nussbaumer Knaflic - 2015
    You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!