Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.

Introduction to Automata Theory, Languages, and Computation


John E. Hopcroft - 1979
    With this long-awaited revision, the authors continue to present the theory in a concise and straightforward manner, now with an eye out for the practical applications. They have revised this book to make it more accessible to today's students, including the addition of more material on writing proofs, more figures and pictures to convey ideas, side-boxes to highlight other interesting material, and a less formal writing style. Exercises at the end of each chapter, including some new, easier exercises, help readers confirm and enhance their understanding of the material. *NEW! Completely rewritten to be less formal, providing more accessibility to todays students. *NEW! Increased usage of figures and pictures to help convey ideas. *NEW! More detail and intuition provided for definitions and proofs. *NEW! Provides special side-boxes to present supplemental material that may be of interest to readers. *NEW! Includes more exercises, including many at a lower level. *NEW! Presents program-like notation for PDAs and Turing machines. *NEW! Increas

Elements of the Theory of Computation


Harry R. Lewis - 1981
    The authors are well-known for their clear presentation that makes the material accessible to a a broad audience and requires no special previous mathematical experience. KEY TOPICS: In this new edition, the authors incorporate a somewhat more informal, friendly writing style to present both classical and contemporary theories of computation. Algorithms, complexity analysis, and algorithmic ideas are introduced informally in Chapter 1, and are pursued throughout the book. Each section is followed by problems.

Basic Category Theory for Computer Scientists


Benjamin C. Pierce - 1991
    Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts.

Computational Complexity


Sanjeev Arora - 2007
    Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Feynman Lectures On Computation


Richard P. Feynman - 1996
    Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

A Mathematical Introduction to Logic


Herbert B. Enderton - 1972
    The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.

Computational Complexity


Christos H. Papadimitriou - 1993
    It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.

Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

An Introduction to Functional Programming Through Lambda Calculus


Greg Michaelson - 1989
    This well-respected text offers an accessible introduction to functional programming concepts and techniques for students of mathematics and computer science. The treatment is as nontechnical as possible, and it assumes no prior knowledge of mathematics or functional programming. Cogent examples illuminate the central ideas, and numerous exercises appear throughout the text, offering reinforcement of key concepts. All problems feature complete solutions.

The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine


Charles Petzold - 2008
    Turing Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be "computable," creating the field of computability theory in the process, a foundation of present-day computer programming.The book expands Turing's original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing's statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others.Interwoven into the narrative are the highlights of Turing's own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.

Discrete Mathematics and Its Applications


Kenneth H. Rosen - 2000
    These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.