Book picks similar to
An Introduction to the History of Mathematics by Howard Eves
math
mathematics
history
non-fiction
Archimedes' Revenge: The Joys and Perils of Mathematics
Paul Hoffman - 1988
An extremely clever account.--The New Yorker.
Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers
Joseph Mazur - 2014
What did mathematicians rely on for their work before then? And how did mathematical notations evolve into what we know today? In Enlightening Symbols, popular math writer Joseph Mazur explains the fascinating history behind the development of our mathematical notation system. He shows how symbols were used initially, how one symbol replaced another over time, and how written math was conveyed before and after symbols became widely adopted.Traversing mathematical history and the foundations of numerals in different cultures, Mazur looks at how historians have disagreed over the origins of the numerical system for the past two centuries. He follows the transfigurations of algebra from a rhetorical style to a symbolic one, demonstrating that most algebra before the sixteenth century was written in prose or in verse employing the written names of numerals. Mazur also investigates the subconscious and psychological effects that mathematical symbols have had on mathematical thought, moods, meaning, communication, and comprehension. He considers how these symbols influence us (through similarity, association, identity, resemblance, and repeated imagery), how they lead to new ideas by subconscious associations, how they make connections between experience and the unknown, and how they contribute to the communication of basic mathematics.From words to abbreviations to symbols, this book shows how math evolved to the familiar forms we use today.
Algebra II For Dummies
Mary Jane Sterling - 2004
To understand algebra is to possess the power to grow your skills and knowledge so you can ace your courses and possibly pursue further study in math. Algebra II For Dummies is the fun and easy way to get a handle on this subject and solve even the trickiest algebra problems. This friendly guide shows you how to get up to speed on exponential functions, laws of logarithms, conic sections, matrices, and other advanced algebra concepts. In no time you'll have the tools you need to:Interpret quadratic functions Find the roots of a polynomial Reason with rational functions Expose exponential and logarithmic functions Cut up conic sections Solve linear and non linear systems of equations Equate inequalities Simplifyy complex numbers Make moves with matrices Sort out sequences and sets This straightforward guide offers plenty of multiplication tricks that only math teachers know. It also profiles special types of numbers, making it easy for you to categorize them and solve any problems without breaking a sweat. When it comes to understanding and working out algebraic equations, Algebra II For Dummies is all you need to succeed!
Mathematics for the Million: How to Master the Magic of Numbers
Lancelot Hogben - 1937
His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.
Physics for Scientists and Engineers, Volume 2
Raymond A. Serway - 1982
Raymond Serway, Robert Beichner, and contributing author John W. Jewett present a strong problem-solving approach that is further enhanced through increased realism in worked examples. Problem-solving strategies and hints allow students to develop a systematic approach to completing homework problems. The outstanding ancillary package includes full multimedia support, online homework, and a content-rich Web site that provides extensive support for instructors and students. The CAPA (Computer-assisted Personalized Approach), WebAssign, and University of Texas homework delivery systems give instructors flexibility in assigning online homework.
How to Ace Calculus: The Streetwise Guide
Colin Conrad Adams - 1998
Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.
Spacetime Physics
Edwin F. Taylor - 1966
Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars. The chapter on general relativity with new material on gravity waves, black holes, and cosmology.
A Brief History of Mathematics
Marcus du Sautoy - 2011
Professor Marcus du Sautoy shows how these masters of abstraction find a role in the real world and proves that mathematics is the driving force behind modern science. He explores the relationship between Newton and Leibniz, the men behind the calculus; looks at how the mathematics that Euler invented 200 years ago paved the way for the internet and discovers how Fourier transformed our understanding of heat, light and sound. In addition, he finds out how Galois’ mathematics describes the particles that make up our universe, how Gaussian distribution underpins modern medicine, and how Riemann’s maths helped Einstein with his theory of relativity. Finally, he introduces Cantor, who discovered infinite numbers; Poincaré, whose work gave rise to chaos theory; G.H. Hardy, whose work inspired the millions of codes that help to keep the internet safe, and Nicolas Bourbaki, the mathematician who never was. The BBC Radio 4 series looking at the people who shaped modern mathematics, written and presented by Marcus du Sautoy. 1 CDs, 150 minutes
All the Mathematics You Missed
Thomas A. Garrity - 2001
This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.
Mathematical Methods for Physicists
George B. Arfken - 1970
This work includes differential forms and the elegant forms of Maxwell's equations, and a chapter on probability and statistics. It also illustrates and proves mathematical relations.
Introduction to Mathematical Statistics
Robert V. Hogg - 1962
Designed for two-semester, beginning graduate courses in Mathematical Statistics, and for senior undergraduate Mathematics, Statistics, and Actuarial Science majors, this text retains its ongoing features and continues to provide students with background material.
Elements of Electromagnetics
Matthew N.O. Sadiku - 1993
The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.
The Story of Mathematics
Anne Rooney - 2008
Topics include the development of counting and numbers systems, the emergence of zero, cultures that don’t have numbers, algebra, solid geometry, symmetry and beauty, perspective, riddles and problems, calculus, mathematical logic, friction force and displacement, subatomic particles, and the expansion of the universe. Great mathematical thinkers covered include Napier, Liu Hui, Aryabhata, Galileo, Newton, Russell, Einstein, Riemann, Euclid, Carl Friedrich Gauss, Charles Babbage, Montmort, Wittgenstein, and many more. The book is beautifully illustrated throughout in full color.
Unknown Quantity: A Real and Imaginary History of Algebra
John Derbyshire - 2006
As he did so masterfully in Prime Obsession, Derbyshire brings the evolution of mathematical thinking to dramatic life by focusing on the key historical players. Unknown Quantity begins in the time of Abraham and Isaac and moves from Abel's proof to the higher levels of abstraction developed by Galois through modern-day advances. Derbyshire explains how a simple turn of thought from this plus this equals this to this plus what equals this? gave birth to a whole new way of perceiving the world. With a historian's narrative authority and a beloved teacher's clarity and passion, Derbyshire leads readers on an intellectually satisfying and pleasantly challenging historical and mathematical journey.
Journey through Genius: The Great Theorems of Mathematics
William Dunham - 1990
Now William Dunham gives them the attention they deserve.Dunham places each theorem within its historical context and explores the very human and often turbulent life of the creator — from Archimedes, the absentminded theoretician whose absorption in his work often precluded eating or bathing, to Gerolamo Cardano, the sixteenth-century mathematician whose accomplishments flourished despite a bizarre array of misadventures, to the paranoid genius of modern times, Georg Cantor. He also provides step-by-step proofs for the theorems, each easily accessible to readers with no more than a knowledge of high school mathematics.A rare combination of the historical, biographical, and mathematical, Journey Through Genius is a fascinating introduction to a neglected field of human creativity.