Understanding Ecmascript 6: The Definitive Guide for JavaScript Developers


Nicholas C. Zakas - 2016
    In Understanding ECMAScript 6, expert developer Nicholas C. Zakas provides a complete guide to the object types, syntax, and other exciting changes that ECMAScript 6 brings to JavaScript. Every chapter is packed with example code that works in any JavaScript environment so you'll be able to see new features in action. You'll learn:How ECMAScript 6 class syntax relates to more familiar JavaScript conceptsWhat makes iterators and generators usefulHow arrow functions differ from regular functionsWays to store data with sets, maps, and moreThe power of inheritanceHow to improve asynchronous programming with promisesHow modules change the way you organize codeWhether you're a web developer or a Node.js developer, you'll find Understanding ECMAScript 6 indispensable on your journey from ECMAScript 5 to ECMAScript 6.

The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations


Gene Kim - 2015
    For decades, technology leaders have struggled to balance agility, reliability, and security. The consequences of failure have never been greater whether it's the healthcare.gov debacle, cardholder data breaches, or missing the boat with Big Data in the cloud.And yet, high performers using DevOps principles, such as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying code into production hundreds, or even thousands, of times per day.Following in the footsteps of The Phoenix Project, The DevOps Handbook shows leaders how to replicate these incredible outcomes, by showing how to integrate Product Management, Development, QA, IT Operations, and Information Security to elevate your company and win in the marketplace."Table of contentsPrefaceSpreading the Aha! MomentIntroductionPART I: THE THREE WAYS1. Agile, continuous delivery and the three ways2. The First Way: The Principles of Flow3. The Second Way: The Principle of Feedback4. The Third Way: The Principles of Continual LearningPART II: WHERE TO START5. Selecting which value stream to start with6. Understanding the work in our value stream…7. How to design our organization and architecture8. How to get great outcomes by integrating operations into the daily work for developmentPART III: THE FIRST WAY: THE TECHNICAL PRACTICES OF FLOW9. Create the foundations of our deployment pipeline10. Enable fast and reliable automated testing11. Enable and practice continuous integration12. Automate and enable low-risk releases13. Architect for low-risk releasesPART IV: THE SECOND WAY: THE TECHNICAL PRACTICES OF FEEDBACK14*. Create telemetry to enable seeing abd solving problems15. Analyze telemetry to better anticipate problems16. Enable feedbackso development and operation can safely deploy code17. Integrate hypothesis-driven development and A/B testing into our daily work18. Create review and coordination processes to increase quality of our current workPART V: THE THRID WAY: THE TECHNICAL PRACTICES OF CONTINUAL LEARNING19. Enable and inject learning into daily work20. Convert local discoveries into global improvements21. Reserve time to create organizational learning22. Information security as everyone’s job, every day23. Protecting the deployment pipelinePART VI: CONCLUSIONA call to actionConclusion to the DevOps HandbookAPPENDICES1. The convergence of Devops2. The theory of constraints and core chronic conflicts3. Tabular form of downward spiral4. The dangers of handoffs and queues5. Myths of industrial safety6. The Toyota Andon Cord7. COTS Software8. Post-mortem meetings9. The Simian Army10. Transparent uptimeAdditional ResourcesEndnotes

Java Generics and Collections: Speed Up the Java Development Process


Maurice Naftalin - 2006
    Generics and the greatly expanded collection libraries have tremendously increased the power of Java 5 and Java 6. But they have also confused many developers who haven't known how to take advantage of these new features.Java Generics and Collections covers everything from the most basic uses of generics to the strangest corner cases. It teaches you everything you need to know about the collections libraries, so you'll always know which collection is appropriate for any given task, and how to use it.Topics covered include:• Fundamentals of generics: type parameters and generic methods• Other new features: boxing and unboxing, foreach loops, varargs• Subtyping and wildcards• Evolution not revolution: generic libraries with legacy clients and generic clients with legacy libraries• Generics and reflection• Design patterns for generics• Sets, Queues, Lists, Maps, and their implementations• Concurrent programming and thread safety with collections• Performance implications of different collectionsGenerics and the new collection libraries they inspired take Java to a new level. If you want to take your software development practice to a new level, this book is essential reading.Philip Wadler is Professor of Theoretical Computer Science at the University of Edinburgh, where his research focuses on the design of programming languages. He is a co-designer of GJ, work that became the basis for generics in Sun's Java 5.0.Maurice Naftalin is Technical Director at Morningside Light Ltd., a software consultancy in the United Kingdom. He has most recently served as an architect and mentor at NSB Retail Systems plc, and as the leader of the client development team of a major UK government social service system."A brilliant exposition of generics. By far the best book on the topic, it provides a crystal clear tutorial that starts with the basics and ends leaving the reader with a deep understanding of both the use and design of generics." Gilad Bracha, Java Generics Lead, Sun Microsystems

Data Science at the Command Line: Facing the Future with Time-Tested Tools


Jeroen Janssens - 2014
    You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms

Atheism 101: Answers, Explanations and Rebuttals


Grigory Lukin - 2011
    What is the meaning of life? What was Hitler's religion? What's the deal with the Flying Spaghetti Monster? And what was Mother Teresa's dark secret? This book is highly recommended for everyone curious about America's most misunderstood minority, as well as for those who wish to better understand their atheist friends, neighbors or coworkers.

The Most Human Human: What Talking with Computers Teaches Us About What It Means to Be Alive


Brian Christian - 2011
    Its starting point is the annual Turing Test, which pits artificial intelligence programs against people to determine if computers can “think.”Named for computer pioneer Alan Turing, the Tur­ing Test convenes a panel of judges who pose questions—ranging anywhere from celebrity gossip to moral conundrums—to hidden contestants in an attempt to discern which is human and which is a computer. The machine that most often fools the panel wins the Most Human Computer Award. But there is also a prize, bizarre and intriguing, for the Most Human Human.In 2008, the top AI program came short of passing the Turing Test by just one astonishing vote. In 2009, Brian Christian was chosen to participate, and he set out to make sure Homo sapiens would prevail.The author’s quest to be deemed more human than a com­puter opens a window onto our own nature. Interweaving modern phenomena like customer service “chatbots” and men using programmed dialogue to pick up women in bars with insights from fields as diverse as chess, psychiatry, and the law, Brian Christian examines the philosophical, bio­logical, and moral issues raised by the Turing Test.One central definition of human has been “a being that could reason.” If computers can reason, what does that mean for the special place we reserve for humanity?

Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions


Michael G. Milton - 2009
    If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

CSS Cookbook


Christopher Schmitt - 2004
    But first, you have to get past CSS theory and resolve real-world problems.For those all-too-common dilemmas that crop up with each project, "CSS Cookbook" provides hundreds of practical examples with CSS code recipes that you can use immediately to format your web pages. Arranged in a quick-lookup format for easy reference, the second edition has been updated to explain the unique behavior of the latest browsers: Microsoft's IE 7 and Mozilla's Firefox 1.5. Also, the book has been expanded to cover the interaction of CSS and images and now includes more recipes for beginning CSS users. The explanation that accompanies each recipe enables you to customize the formatting for your specific needs. With topics that range from basic web typography and page layout to techniques for formatting lists, forms, and tables, this book is a must-have companion, regardless of your experience with Cascading Style Sheets.

I'm Feeling Lucky: The Confessions of Google Employee Number 59


Douglas Edwards - 2011
    No academic analysis or bystander’s account can capture it. Now Doug Edwards, Employee Number 59, offers the first inside view of Google, giving readers a chance to fully experience the bizarre mix of camaraderie and competition at this phenomenal company. Edwards, Google’s first director of marketing and brand management, describes it as it happened. We see the first, pioneering steps of Larry Page and Sergey Brin, the company’s young, idiosyncratic partners; the evolution of the company’s famously nonhierarchical structure (where every employee finds a problem to tackle or a feature to create and works independently); the development of brand identity; the races to develop and implement each new feature; and the many ideas that never came to pass. Above all, Edwards—a former journalist who knows how to write—captures the “Google Experience,” the rollercoaster ride of being part of a company creating itself in a whole new universe. I’m Feeling Lucky captures for the first time the unique, self-invented, yet profoundly important culture of the world’s most transformative corporation.

Learn Windows PowerShell 3 in a Month of Lunches


Don Jones - 2011
    Just set aside one hour a day—lunchtime would be perfect—for a month, and you'll be automating Windows tasks faster than you ever thought possible. You'll start with the basics—what is PowerShell and what can you do with it. Then, you'll move systematically through the techniques and features you'll use to make your job easier and your day shorter. This totally revised second edition covers new PowerShell 3 features designed for Windows 8 and Windows Server 2012.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.What's InsideLearn PowerShell from the beginning—no experience required! Covers PowerShell 3, Windows 8, and Windows Server 2012 Each lesson should take you one hour or lessAbout the TechnologyPowerShell is both a language and an administrative shell with which you can control and automate nearly every aspect of Windows. It accepts and executes commands immediately, and you can write scripts to manage most Windows servers like Exchange, IIS, and SharePoint.Experience with Windows administration is helpful. No programming experience is assumed.Table of ContentsBefore you begin Meet PowerShell Using the help system Running commands Working with providers The pipeline: connecting commands Adding commands Objects: data by another name The pipeline, deeper Formatting—and why it's done on the right Filtering and comparisons A practical interlude Remote control: one to one, and one to many Using Windows Management Instrumentation Multitasking with background jobs Working with many objects, one at a time Security alert! Variables: a place to store your stuff Input and output Sessions: remote control with less work You call this scripting? Improving your parameterized script Advanced remoting configuration Using regular expressions to parse text files Additional random tips, tricks, and techniques Using someone else's script Never the end PowerShell cheat sheet

Perl Best Practices: Standards and Styles for Developing Maintainable Code


Damian Conway - 2005
    They aren't conscious of all the choices they make, like how they format their source, the names they use for variables, or the kinds of loops they use. They're focused entirely on problems they're solving, solutions they're creating, and algorithms they're implementing. So they write code in the way that seems natural, that happens intuitively, and that feels good.But if you're serious about your profession, intuition isn't enough. Perl Best Practices author Damian Conway explains that rules, conventions, standards, and practices not only help programmers communicate and coordinate with one another, they also provide a reliable framework for thinking about problems, and a common language for expressing solutions. This is especially critical in Perl, because the language is designed to offer many ways to accomplish the same task, and consequently it supports many incompatible dialects.With a good dose of Aussie humor, Dr. Conway (familiar to many in the Perl community) offers 256 guidelines on the art of coding to help you write better Perl code--in fact, the best Perl code you possibly can. The guidelines cover code layout, naming conventions, choice of data and control structures, program decomposition, interface design and implementation, modularity, object orientation, error handling, testing, and debugging.They're designed to work together to produce code that is clear, robust, efficient, maintainable, and concise, but Dr. Conway doesn't pretend that this is the one true universal and unequivocal set of best practices. Instead, Perl Best Practices offers coherent and widely applicable suggestions based on real-world experience of how code is actually written, rather than on someone's ivory-tower theories on how software ought to be created.Most of all, Perl Best Practices offers guidelines that actually work, and that many developers around the world are already using. Much like Perl itself, these guidelines are about helping you to get your job done, without getting in the way.Praise for Perl Best Practices from Perl community members:"As a manager of a large Perl project, I'd ensure that every member of my team has a copy of Perl Best Practices on their desk, and use it as the basis for an in-house style guide." -- Randal Schwartz"There are no more excuses for writing bad Perl programs. All levels of Perl programmer will be more productive after reading this book." -- Peter Scott"Perl Best Practices will be the next big important book in the evolution of Perl. The ideas and practices Damian lays down will help bring Perl out from under the embarrassing heading of "scripting languages". Many of us have known Perl is a real programming language, worthy of all the tasks normally delegated to Java and C++. With Perl Best Practices, Damian shows specifically how and why, so everyone else can see, too." -- Andy Lester"Damian's done what many thought impossible: show how to build large, maintainable Perl applications, while still letting Perl be the powerful, expressive language that programmers have loved for years." -- Bill Odom"Finally, a means to bring lasting order to the process and product of real Perl development teams." -- Andrew Sundstrom"Perl Best Practices provides a valuable education in how to write robust, maintainable P

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale


Neha Narkhede - 2017
    And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Java 8 in Action


Raoul-Gabriel Urma - 2014
    The book covers lambdas, streams, and functional-style programming. With Java 8's functional features you can now write more concise code in less time, and also automatically benefit from multicore architectures. It's time to dig in!