Book picks similar to
Elements of Graphing Data by William S. Cleveland


visualization
non-fiction
design
data-visualization

Ambient Findability: What We Find Changes Who We Become


Peter Morville - 2005
    Written by Peter Morville, author of the groundbreaking Information Architecture for the World Wide Web, the book defines our current age as a state of unlimited findability. In other words, anyone can find anything at any time. Complete navigability.Morville discusses the Internet, GIS, and other network technologies that are coming together to make unlimited findability possible. He explores how the melding of these innovations impacts society, since Web access is now a standard requirement for successful people and businesses. But before he does that, Morville looks back at the history of wayfinding and human evolution, suggesting that our fear of being lost has driven us to create maps, charts, and now, the mobile Internet.The book's central thesis is that information literacy, information architecture, and usability are all critical components of this new world order. Hand in hand with that is the contention that only by planning and designing the best possible software, devices, and Internet, will we be able to maintain this connectivity in the future. Morville's book is highlighted with full color illustrations and rich examples that bring his prose to life.Ambient Findability doesn't preach or pretend to know all the answers. Instead, it presents research, stories, and examples in support of its novel ideas. Are we truly at a critical point in our evolution where the quality of our digital networks will dictate how we behave as a species? Is findability indeed the primary key to a successful global marketplace in the 21st century and beyond. Peter Morville takes you on a thought-provoking tour of these memes and more -- ideas that will not only fascinate but will stir your creativity in practical ways that you can apply to your work immediately.

Statistics in Plain English


Timothy C. Urdan - 2001
    Each self-contained chapter consists of three sections. The first describes the statistic, including how it is used and what information it provides. The second section reviews how it works, how to calculate the formula, the strengths and weaknesses of the technique, and the conditions needed for its use. The final section provides examples that use and interpret the statistic. A glossary of terms and symbols is also included.New features in the second edition include:an interactive CD with PowerPoint presentations and problems for each chapter including an overview of the problem's solution; new chapters on basic research concepts including sampling, definitions of different types of variables, and basic research designs and one on nonparametric statistics; more graphs and more precise descriptions of each statistic; and a discussion of confidence intervals.This brief paperback is an ideal supplement for statistics, research methods, courses that use statistics, or as a reference tool to refresh one's memory about key concepts. The actual research examples are from psychology, education, and other social and behavioral sciences.Materials formerly available with this book on CD-ROM are now available for download from our website www.psypress.com. Go to the book's page and look for the 'Download' link in the right-hand column.

Beyond Bullet Points: Using Microsoft PowerPoint to Create Presentations that Inform, Motivate, and Inspire


Cliff Atkinson - 2005
    He guides you, step by step, as you discover how to combine the tenets of classic storytelling with the power of the projected media to create a rich, engaging experience. He walks you through his easy-to-use templates, plus 50 advanced tips, to help build your confidence and effectiveness—and quickly bring your ideas to life!FOCUS: Learn how to distill your best ideas into a crisp and compelling narrative.CLARIFY: Use a storyboard to clarify and visualize your ideas, creating the right blend of message and media.ENGAGE:Move from merely reading your slides to creating a rich, connected experience with your audience—and increase your impact!Inside!: See sample storyboards for a variety of presentation types—including investment, sales, educational, and training.

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work


Q. Ethan McCallum - 2012
    In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they’ve recovered from nasty data problems.From cranky storage to poor representation to misguided policy, there are many paths to bad data. Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it.Among the many topics covered, you’ll discover how to:Test drive your data to see if it’s ready for analysisWork spreadsheet data into a usable formHandle encoding problems that lurk in text dataDevelop a successful web-scraping effortUse NLP tools to reveal the real sentiment of online reviewsAddress cloud computing issues that can impact your analysis effortAvoid policies that create data analysis roadblocksTake a systematic approach to data quality analysis

Big Data for Dummies


Judith Hurwitz - 2013
    Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work.Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.

Introduction to Probability Models


Sheldon M. Ross - 1972
    This updated edition of Ross's classic bestseller provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.This book now contains a new section on compound random variables that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions; a new section on hiddden Markov chains, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states; and a simplified approach for analyzing nonhomogeneous Poisson processes. There are also additional results on queues relating to the conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; inspection paradox for M/M/1 queues; and M/G/1 queue with server breakdown. Furthermore, the book includes new examples and exercises, along with compulsory material for new Exam 3 of the Society of Actuaries.This book is essential reading for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability.

Bayes Theorem Examples: An Intuitive Guide


Scott Hartshorn - 2016
    Essentially, you are estimating a probability, but then updating that estimate based on other things that you know. This book is designed to give you an intuitive understanding of how to use Bayes Theorem. It starts with the definition of what Bayes Theorem is, but the focus of the book is on providing examples that you can follow and duplicate. Most of the examples are calculated in Excel, which is useful for updating probability if you have dozens or hundreds of data points to roll in.

Generative Design: Visualize, Program, and Create with Processing


Hartmut Bohnacker - 2009
    By using accessible programming languages such as Processing, artists and designers are producing extravagant, crystalline structures that can form the basis of anything from patterned textiles and typography to lighting, scientific diagrams, sculptures, films, and even fantastical buildings. Opening with a gallery of thirty-five illustrated case studies, Generative Design takes users through specific, practical instructions on how to create their own visual experiments by combining simple-to-use programming codes with basic design principles. A detailed handbook of advanced strategies provides visual artists with all the tools to achieve proficiency. Both a how-to manual and a showcase for recent work in this exciting new field, Generative Design is the definitive study and reference book that designers have been waiting for.

Mining of Massive Datasets


Anand Rajaraman - 2011
    This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.

Make Your Own Neural Network


Tariq Rashid - 2016
     Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.

Thinking with Data


Max Shron - 2014
    In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills.Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved.Learn a framework for scoping data projectsUnderstand how to pin down the details of an idea, receive feedback, and begin prototypingUse the tools of arguments to ask good questions, build projects in stages, and communicate resultsExplore data-specific patterns of reasoning and learn how to build more useful argumentsDelve into causal reasoning and learn how it permeates data workPut everything together, using extended examples to see the method of full problem thinking in action

Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor


Virginia Eubanks - 2018
    In Pittsburgh, a child welfare agency uses a statistical model to try to predict which children might be future victims of abuse or neglect.Since the dawn of the digital age, decision-making in finance, employment, politics, health and human services has undergone revolutionary change. Today, automated systems—rather than humans—control which neighborhoods get policed, which families attain needed resources, and who is investigated for fraud. While we all live under this new regime of data, the most invasive and punitive systems are aimed at the poor.In Automating Inequality, Virginia Eubanks systematically investigates the impacts of data mining, policy algorithms, and predictive risk models on poor and working-class people in America. The book is full of heart-wrenching and eye-opening stories, from a woman in Indiana whose benefits are literally cut off as she lays dying to a family in Pennsylvania in daily fear of losing their daughter because they fit a certain statistical profile.The U.S. has always used its most cutting-edge science and technology to contain, investigate, discipline and punish the destitute. Like the county poorhouse and scientific charity before them, digital tracking and automated decision-making hide poverty from the middle-class public and give the nation the ethical distance it needs to make inhumane choices: which families get food and which starve, who has housing and who remains homeless, and which families are broken up by the state. In the process, they weaken democracy and betray our most cherished national values.This deeply researched and passionate book could not be more timely.Naomi Klein: "This book is downright scary."Ethan Zuckerman, MIT: "Should be required reading."Dorothy Roberts, author of Killing the Black Body: "A must-read for everyone concerned about modern tools of inequality in America."Astra Taylor, author of The People's Platform: "This is the single most important book about technology you will read this year."