Book picks similar to
Practical Tools for Designing and Weighting Survey Samples by Richard Valliant
62-statistics-and-statistical
at-work
data-science
methods-quan-survey
Suzuki Violin School, Vol 3: Violin Part
Shinichi Suzuki - 1971
Martini) * Minuet, BWV Anh. II 114/Anh. III 183/Anh. II 115 (J. S. Bach) * Gavotte in G Minor, Gavotte en Rondeau from Suite in G Minor for Klavier, BWV 822 (J. S. Bach) * Humoresque, Op. 101, No. 7 for Piano (A. Dvor�k) * Gavottes I and II from Suite III in C Major for Violoncello, BWV 1009 (J. Becker) * Gavotte in D Major (J. S. Bach) * Bourr�e, Bour�es I and II from Suite III in C Major for Violoncello, BWV 1009 (J. S. Bach). This title is available in SmartMusic.
Mathematical Methods in the Physical Sciences
Mary L. Boas - 1967
Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.
Finite-Dimensional Vector Spaces
Paul R. Halmos - 1947
The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all, this is an excellent work, of equally high value for both student and teacher." Zentralblatt f�r Mathematik
Introduction to Real Analysis
Robert G. Bartle - 1982
Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.
Practical Statistics for Data Scientists: 50 Essential Concepts
Peter Bruce - 2017
Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data
Abstract Algebra
David S. Dummit - 1900
This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. * The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.
Research Methodology: A Step-By-Step Guide for Beginners
Ranjit Kumar - 1999
Written specifically for students with no previous experience of research and research methodology, the writing style is simple and clear and the author presents this complex subject in a straightforward way that empowers readers to tackle research with confidence. The book has been revised and updated to include extended coverage of qualitative research methods in addition to existing comprehensive coverage of quantitative methods. There are also brand new learning features such as reflective questions throughout the text to help students consolidate their knowledge.
Probability, Random Variables and Stochastic Processes with Errata Sheet
Athanasios Papoulis - 2001
Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material--this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics.
Statistics in a Nutshell: A Desktop Quick Reference
Sarah Boslaugh - 2008
This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrated by graphics, formulas, and plenty of solved examples. Before you know it, you'll learn to apply statistical reasoning and statistical techniques, from basic concepts of probability and hypothesis testing to multivariate analysis. Organized into four distinct sections, Statistics in a Nutshell offers you:Introductory material: Different ways to think about statistics Basic concepts of measurement and probability theoryData management for statistical analysis Research design and experimental design How to critique statistics presented by others Basic inferential statistics: Basic concepts of inferential statistics The concept of correlation, when it is and is not an appropriate measure of association Dichotomous and categorical data The distinction between parametric and nonparametric statistics Advanced inferential techniques: The General Linear Model Analysis of Variance (ANOVA) and MANOVA Multiple linear regression Specialized techniques: Business and quality improvement statistics Medical and public health statistics Educational and psychological statistics Unlike many introductory books on the subject, Statistics in a Nutshell doesn't omit important material in an effort to dumb it down. And this book is far more practical than most college texts, which tend to over-emphasize calculation without teaching you when and how to apply different statistical tests. With Statistics in a Nutshell, you learn how to perform most common statistical analyses, and understand statistical techniques presented in research articles. If you need to know how to use a wide range of statistical techniques without getting in over your head, this is the book you want.
Algebraic Topology
Allen Hatcher - 2001
This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
Chaos and Fractals: New Frontiers of Science
Heinz-Otto Peitgen - 1992
At the time we were hoping that our approach of writing a book which would be both accessible without mathematical sophistication and portray these exiting new fields in an authentic manner would find an audience. Now we know it did. We know from many reviews and personal letters that the book is used in a wide range of ways: researchers use it to acquaint themselves, teachers use it in college and university courses, students use it for background reading, and there is also a substantial audience of lay people who just want to know what chaos and fractals are about. Every book that is somewhat technical in nature is likely to have a number of misprints and errors in its first edition. Some of these were caught and brought to our attention by our readers. One of them, Hermann Flaschka, deserves to be thanked in particular for his suggestions and improvements. This second edition has several changes. We have taken out the two appendices from the firstedition. At the time of the first edition Yuval Fishers contribution, which we published as an appendix was probably the first complete expository account on fractal image compression. Meanwhile, Yuvals book Fractal Image Compression: Theory and Application appeared and is now the publication to refer to.
Judgment Under Uncertainty: Heuristics and Biases
Daniel Kahneman - 1982
Individual chapters discuss the representativeness and availability heuristics, problems in judging covariation and control, overconfidence, multistage inference, social perception, medical diagnosis, risk perception, and methods for correcting and improving judgments under uncertainty. About half of the chapters are edited versions of classic articles; the remaining chapters are newly written for this book. Most review multiple studies or entire subareas of research and application rather than describing single experimental studies. This book will be useful to a wide range of students and researchers, as well as to decision makers seeking to gain insight into their judgments and to improve them.
Complex Adaptive Systems: An Introduction to Computational Models of Social Life
John H. Miller - 2007
Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.
Qualitative Data Analysis: A Methods Sourcebook
Matthew B. Miles - 2013
Several of the data display strategies from previous editions are now presented in re-envisioned and reorganized formats to enhance reader accessibility and comprehension. The Third Edition's presentation of the fundamentals of research design and data management is followed by five distinct methods of analysis: exploring, describing, ordering, explaining, and predicting. Miles and Huberman′s original research studies are profiled and accompanied with new examples from Salda�a′s recent qualitative work. The book′s most celebrated chapter, Drawing and Verifying Conclusions, is retained and revised, and the chapter on report writing has been greatly expanded, and is now called Writing About Qualitative Research. Comprehensive and authoritative,
Qualitative Data Analysis
has been elegantly revised for a new generation of qualitative researchers.
The Art of R Programming: A Tour of Statistical Software Design
Norman Matloff - 2011
No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.