Book picks similar to
A little book of R for time series by Avril Coghlan


ebook-not-read
machine-learning
mathematics
reference

Social and Economic Networks


Matthew O. Jackson - 2008
    The many aspects of our lives that are governed by social networks make it critical to understand how they impact behavior, which network structures are likely to emerge in a society, and why we organize ourselves as we do. In Social and Economic Networks, Matthew Jackson offers a comprehensive introduction to social and economic networks, drawing on the latest findings in economics, sociology, computer science, physics, and mathematics. He provides empirical background on networks and the regularities that they exhibit, and discusses random graph-based models and strategic models of network formation. He helps readers to understand behavior in networked societies, with a detailed analysis of learning and diffusion in networks, decision making by individuals who are influenced by their social neighbors, game theory and markets on networks, and a host of related subjects. Jackson also describes the varied statistical and modeling techniques used to analyze social networks. Each chapter includes exercises to aid students in their analysis of how networks function.This book is an indispensable resource for students and researchers in economics, mathematics, physics, sociology, and business.

Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Zero Belly Smoothies: Lose up to 16 Pounds in 14 Days and Sip Your Way to A Lean & Healthy You!


David Zinczenko - 2014
      With fat-burning proteins and a specially selected array of high-powered fruits and vegetables, Zero Belly Smoothies—based on the New York Times bestseller Zero Belly Diet—are the fastest and most delicious ways ever created to sip off the pounds!   Inside, you’ll find a complete shopping guide, a bonus cleanse program, and more than 100 intensely flavorful recipes, including tasty green drinks, fresh and fruity smoothies, nutty, chocolatey shakes, and savory surprises.   Zero Belly Smoothies will help you: • Lose up to 16 pounds in 14 days. • Melt away stubborn fat, from your belly first. • Put an immediate end to bloating and discomfort. • Detox from unhealthy foods so you enjoy all-day energy. • Turn off your fat storage genes and make long-term weight loss effortless. • Look and feel younger and healthier than ever!From the Trade Paperback edition.

R in Action


Robert Kabacoff - 2011
    The book begins by introducing the R language, including the development environment. Focusing on practical solutions, the book also offers a crash course in practical statistics and covers elegant methods for dealing with messy and incomplete data using features of R.About the TechnologyR is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data.About the BookR in Action is a language tutorial focused on practical problems. It presents useful statistics examples and includes elegant methods for handling messy, incomplete, and non-normal data that are difficult to analyze using traditional methods. And statistical analysis is only part of the story. You'll also master R's extensive graphical capabilities for exploring and presenting data visually. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's InsidePractical data analysis, step by stepInterfacing R with other softwareUsing R to visualize dataOver 130 graphsEight reference appendixes================================Table of ContentsPart I Getting startedIntroduction to RCreating a datasetGetting started with graphsBasic data managementAdvanced data managementPart II Basic methodsBasic graphsBasic statisticsPart III Intermediate methodsRegressionAnalysis of variancePower analysisIntermediate graphsRe-sampling statistics and bootstrappingPart IV Advanced methodsGeneralized linear modelsPrincipal components and factor analysisAdvanced methods for missing dataAdvanced graphics

The Official Guide for GMAT Quantitative Review


Graduate Management Admission Council (GMAC) - 2005
    This work focuses on the maths skills necessary to pass the GMAT, with nearly 300 questions and explanations on subjects such as arithmetic, algebra, geometry and data sufficiency.

A Byte of Python


Swaroop C.H. - 2004
    An introduction to Python programming for beginners.

Alexa: 1001 Tips and Tricks How To Use Your Amazon Alexa devices


Alexa Adams - 2017
    From shopping, to even getting information on flight times, to even tracking when to walk your dog, Alexa can do this. With over 23,000 skills and more being developed each day, Alexa is here to stay and is here to help you. But what can you do with Alexa? What are some of the abilities of Alexa that you can engage in, some that you can use to truly benefit yourself and others? Well, you’re about to find out. Here is a preview of what you'll learn: All of the different Echo devices and what they entail Various tips on how to use them all Tips to use the various features, including shopping Troubleshooting tips in order to have the best Amazon Echo experience Why you might consider getting one over another The capabilities of Alexa, including a whole slew of various things you can inquire from Alexa A comprehensive list of 1001 things to do with Alexa, including valuable tips and tricks You can become the Echo master that you know you can be, and this book is just the beginning of it all. With this, you’ll be able to control your Echo in the way that it’s meant to be, in the ways that you want it to be, and the different natures of this. Become the person that you want to be today, and make sure that you learn about your Echo, since you truly won’t regret it the moment you begin to use it, and you’ll master it even more with every interaction.

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Python Programming: An Introduction to Computer Science


John Zelle - 2003
    It takes a fairly traditional approach, emphasizing problem solving, design, and programming as the core skills of computer science. However, these ideas are illustrated using a non-traditional language, namely Python. Although I use Python as the language, teaching Python is not the main point of this book. Rather, Python is used to illustrate fundamental principles of design and programming that apply in any language or computing environment. In some places, I have purposely avoided certain Python features and idioms that are not generally found in other languages. There are already many good books about Python on the market; this book is intended as an introduction to computing. Features include the following: *Extensive use of computer graphics. *Interesting examples. *Readable prose. *Flexible spiral coverage. *Just-in-time object coverage. *Extensive end-of-chapter problems.

Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work


Q. Ethan McCallum - 2012
    In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they’ve recovered from nasty data problems.From cranky storage to poor representation to misguided policy, there are many paths to bad data. Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it.Among the many topics covered, you’ll discover how to:Test drive your data to see if it’s ready for analysisWork spreadsheet data into a usable formHandle encoding problems that lurk in text dataDevelop a successful web-scraping effortUse NLP tools to reveal the real sentiment of online reviewsAddress cloud computing issues that can impact your analysis effortAvoid policies that create data analysis roadblocksTake a systematic approach to data quality analysis

Machine Learning in Action


Peter Harrington - 2011
    "Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.

Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites


Matthew A. Russell - 2011
    You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

100 Greatest Cycling Climbs: A Road Cyclist's Guide To Britain's Hills


Simon Warren - 2010
    It is now possible for cyclists of all abilities to ride a well marked, well marshalled event just about any weekend of the year, usually based around one, two or sometimes as many as ten fearsome hills. For the first time, here is a pocket-sized guide to the 100 greatest climbs in the land, the building blocks for these rides, written by a cyclist for cyclists. From lung busting city centre cobbles to leg breaking windswept mountain passes, this guide locates the roads that have tested riders for generations and worked their way into cycling folklore. Whether you're a leisure cyclist looking for a challenge or an elite athlete trying to break records stick this book in your pocket and head for the hills. To watch a video of Simon Warren in action click here

Doing Data Science


Cathy O'Neil - 2013
    But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Python Algorithms: Mastering Basic Algorithms in the Python Language


Magnus Lie Hetland - 2010
    Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.