The Secret to Peak Productivity: A Simple Guide to Reaching Your Personal Best


Tamara Myles - 2014
    Certified Professional Organizer (CPO®) and productivity expert Tamara Myles has developed a simple model-the Productivity Pyramid-which provides an actionable framework for anyone to achieve better results. Based on a sequence of steps leading to peak performance, the author's easily adapt able system consists of five levels:Physical Organization: from decluttering to filing-fool-proof strategies for handling incoming papers and ensuring information remains accessibleElectronic Organization: from dealing with email to electronic file management options such as cloud computingTime Management: mastering the three P's-Plan, Prioritize, and PerformActivity-Goal Alignment: breaking objectives into specific, relevant, and measurable daily tasksPossibility: identifying new life and business goals that will help you reach your greatest potentialSince no single solution will work for everyone, The Secret to Peak Productivity helps you tailor your own personal plan. First, a quick assessment determines your strengths and weaknesses and pinpoints where to focus for immediate results. Then, as you reach each productivity level, you will find a range of potential strategies-allowing you to choose the ones that are right for you for truly remarkable results.

Book of Proof


Richard Hammack - 2009
    It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.

Soldier: The Autobiography


Mike Jackson - 2007
    His autobiography exhibits all the qualities for which he is admired: professionalism, honesty, exuberance and a sense of humour. Most of all it gives a vivid sense of what modern soldiering entails.

How to Manage


Jo Owen - 2006
    It cuts through the mass of management information available and shows the reality of what works and, more importantly, what doesn't work.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics


Clifford A. Pickover - 2009
    Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, it covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic gets a lavishly illustrated spread with stunning color art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.

Things to Make and Do in the Fourth Dimension


Matt Parker - 2014
    This book can be cut, drawn in, folded into shapes and will even take you to the fourth dimension. So join stand-up mathematician Matt Parker on a journey through narcissistic numbers, optimal dating algorithms, at least two different kinds of infinity and more.

Building Thinking Classrooms in Mathematics, Grades K-12: 14 Teaching Practices for Enhancing Learning


Peter Liljedahl - 2020
     Building Thinking Classrooms in Mathematics, Grades K-12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guideProvides the what, why, and how of each practice Includes firsthand accounts of how these practices foster thinking Offers a plethora of macro moves, micro moves, and rich tasks to get started

Gordon Ramsay's Just Desserts


Gordon Ramsay - 2001
    His methods are classical, his desserts extraordinary, and his flair for teaching the basic building blocks for all 100 of these delicious recipes makes every masterpiece completely achievable. From the first few chapters dealing with simpler methods, like roasting fruit to draw out their natural essence or rolling out classic cookies, Gordon paces cooks, step-by-step, through the more delicate pastry techniques, expanding their range with the confidence to whip souffle s that defy gravity. Desserts are never mandatory, but Gordon's mission to share his passion for flavor makes these treats simply irresistible. Since its original release in the fall of 2001, Gordon Ramsay's Just Desserts has been praised in over 80 publications nationwide, reaching a combined audience of more than 4,700,000 readers. Here is a sampling of the acclaim for the renowned chef's mouth-watering dessert collection."

Libellus de Numeros


Jim West - 2014
    With a cruel council leading the only safe city of it's kind in this world, she will have to prove her worth to stay as well as help this city as it is the target for two evil wizards who seek to destroy the city and it's ruling council.Will the council's mighty army of guardians be enough to repel the onslaught of the two wizards' wrath?To help the city and also get back home, she will need the help of the greatest mathematician of all time, Archimedes. In a world where math is magic, Alex wishes she paid more attention in math class.

Principles to Actions: Ensuring Mathematical Success for All


National Council of Teachers of Mathematics - 2014
    What will it take to turn this opportunity into reality in every classroom, school, and district? Continuing its tradition of mathematics education leadership, NCTM has defined and described the principles and actions, including specific teaching practices, that are essential for a high-quality mathematics education for all students. Principles to Actions: Ensuring Mathematical Success for All offers guidance to teachers, specialists, coaches, administrators, policymakers, and parents: Builds on the Principles articulated in Principles and Standards for School Mathematics to present six updated Guiding Principles for School MathematicsSupports the first Guiding Principle, Teaching and Learning, with eight essential, research-based Mathematics Teaching PracticesDetails the five remaining Principles--the Essential Elements that support Teaching and Learning as embodied in the Mathematics Teaching PracticesIdentifies obstacles and unproductive and productive beliefs that all stakeholders must recognize, as well as the teacher and student actions that characterize effective teaching and learning aligned with the Mathematics Teaching PracticesWith Principles to Actions, NCTM takes the next step in shaping the development of high-quality standards throughout the United States, Canada, and worldwide.

D'Alembert's Principle


Andrew Crumey - 1996
    Cunningly structured and as satisfying as an intricate piece of clockwork, it plays with narrative, revels in ideas and succeeds in being both fey and sharp, detached and compassionate. At a time when fiction gives all to the tired virtual realities of sex and violence, internets, Agas and middle-class Angst, it is a brilliant reminder of the power of the imagination to surprise, delight and open windows."David Coward in The Times Literary Supplement"Crumey does produce excellent post-modernist novels, each as concentric and cunning as the others. This is a triptych starting with D'Alembert penning his imagined memoirs. The literary equivalent of an Escher, the story has no identifiable end or beginning. Clever, entertaining, engaging

Who Is Fourier? a Mathematical Adventure


Transnational College of Lex - 1995
    This is done in a way that is not only easy to understand, but is actually fun! Professors and engineers, with high school and college students following closely, comprise the largest percentage of our readers. It is a must-have for anyone interested in music, mathematics, physics, engineering, or complex science. Dr. Yoichiro Nambu, 2008 Nobel Prize Winner in Physics, served as a senior adviser to the English version of Who is Fourier? A Mathematical Adventure.

Topology


James R. Munkres - 1975
    Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."