Book picks similar to
Non-Photorealistic Rendering by Bruce Gooch
computer-graphics
computer-science
old
willing-software
The Bowflex Body Plan: The Power is Yours - Build More Muscle, Lose More Fat
Ellington Darden - 2003
Well, you don't have to resemble a model to achieve a Bowflex body. Now, you can apply the complete science behind what it takes to get that lean, muscular look. The course of action you're holding in your hands contains the best-possible routines and practices that, combined, cause greater and faster results.The Bowflex exercise system is based on the simple bow-and-arrow principle. Its patented Power Rod technology flexes and extends to provide force or resistance, part of your week-by-week workouts, which focus on all major muscle groups. Merge the recommended Bowflex routines with Dr. Ellington Darden's guidelines on eating, hydrating, and resting, and you'll be well on your way to getting the results you've always wanted.In addition to four fat-loss meal plans, you'll find complete programs for out-of-shape athletes, women who want to reduce their hips and thighs, and individuals who wish to focus on their abdominals. Choose the one that's right for you, depending on your age, experience, body type, and personal goals. Throughout these pages you'll be inspired by reports and photographs of real results from real people using a real Bowflex machine.With a little discipline and patience, you'll see your extra fat begin to vanish, revealing your muscles' lean lines. In only six weeks, a man could drop 35 pounds of fat and 5 inches from his waist. A woman could lose 19 pounds of fat and 4 inches from her thighs. And both can build 3 pounds of muscle. Best of all, you will experience strength, firmness, and muscular refinement as never before.Elegant, instructive photographs of Dr. Darden's top 23 Bowflex exercises make this the ideal fitness manual for both men and women-- those who already use the Bowflex system as well as the many new users of this fast-growing home-exercise system. The only authorized book on the subject, The Bowflex Body Plan will help you lose fat, build muscle, and reshape your body-- fast.Soon you will have the results you've always wanted. Soon you will have a Bowflex body.
MCSE Self-Paced Training Kit (Exams 70-290, 70-291, 70-293, 70-294): Microsoft Windows Server 2003 Core Requirements
Dan HolmeMelissa Craft - 2003
Maybe you re going for MCSA first, then MCSE. Maybe you need to upgrade your current credentials. Now, direct from Microsoft, this set brings together all the study resources you ll need. You get the brand-new Second Edition of all four books: for Exam 70-290 (Managing and Maintaining a Windows Server Environment), 70-291 and 70-293 (Network Infrastructure), and 70-294 (Active Directory). What s new here? Deeper coverage, more case studies, more troubleshooting, plus significant new coverage: Emergency Management Services, DNS, WSUS, Post-Setup Security Updates, traffic monitoring, Network Access Quarantine Control, and much more. There are more than 1,200 highly customizable CD-based practice questions. And, for those who don t have easy acess to Windows Server 2003, there s a 180-day eval version. This package isn t cheap, but there s help there, too: 15% discount coupons good toward all four exams. Bill Camarda, from the August 2006 href="http://www.barnesandnoble.com/newslet... Only
Summary and Analysis of The Handmaid's Tale: Based on the Book by Margaret Atwood (Smart Summaries)
Worth Books - 2017
Crafted and edited with care, Worth Books set the standard for quality and give you the tools you need to be a well-informed reader. This short summary and analysis of The Handmaid’s Tale by Margaret Atwood includes: Historical context Part-by-part summaries Analysis of the main characters Themes and symbols Important quotes Fascinating trivia Glossary of terms Supporting material to enhance your understanding of the original work About Margaret Atwood’s The Handmaid’s Tale: Margaret Atwood’s dystopian literary masterpiece tells the story of Offred, a Handmaid living in the near future in what was once the United States. A new theocratic regime called the Republic of Gilead has come to power and changed life as she knew it. Once Offred had a her own name and a loving family—a husband and daughter—both of which were taken from her; now she belongs to the Commander and his hostile wife, and her only value lies in her ability to bear a child for them. She used to read books and learn; now such things are forbidden to all women. Gripping, disturbing, and so relevant today, The Handmaid’s Tale is a brilliant novel and a chilling warning about what can happen when extreme ideas are taken to their logical conclusions. The summary and analysis in this ebook are intended to complement your reading experience and bring you closer to a great work of fiction.
Introduction to Graph Theory
Douglas B. West - 1995
Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
Vector Mechanics for Engineers: Statics and Dynamics
Ferdinand P. Beer - 1972
Over the years their textbooks have introduced significant theoretical and pedagogical innovations in statics, dynamics, and mechanics of materials education. At the same time, their careful presentation of content, unmatched levels of accuracy, and attention to detail have made their texts the standard for excellence. The new Seventh Edition of Vector Mechanics for Engineers: Statics and Dynamics continues this tradition. The seventh edition is complemented by a media and supplement package that is targeted to address core course needs for both the student and the instructor.
The Visual Display of Quantitative Information
Edward R. Tufte - 1983
Theory and practice in the design of data graphics, 250 illustrations of the best (and a few of the worst) statistical graphics, with detailed analysis of how to display data for precise, effective, quick analysis. Design of the high-resolution displays, small multiples. Editing and improving graphics. The data-ink ratio. Time-series, relational graphics, data maps, multivariate designs. Detection of graphical deception: design variation vs. data variation. Sources of deception. Aesthetics and data graphical displays. This is the second edition of The Visual Display of Quantitative Information. Recently published, this new edition provides excellent color reproductions of the many graphics of William Playfair, adds color to other images, and includes all the changes and corrections accumulated during 17 printings of the first edition.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Modern Operating Systems
Andrew S. Tanenbaum - 1992
What makes an operating system modern? According to author Andrew Tanenbaum, it is the awareness of high-demand computer applications--primarily in the areas of multimedia, parallel and distributed computing, and security. The development of faster and more advanced hardware has driven progress in software, including enhancements to the operating system. It is one thing to run an old operating system on current hardware, and another to effectively leverage current hardware to best serve modern software applications. If you don't believe it, install Windows 3.0 on a modern PC and try surfing the Internet or burning a CD. Readers familiar with Tanenbaum's previous text, Operating Systems, know the author is a great proponent of simple design and hands-on experimentation. His earlier book came bundled with the source code for an operating system called Minux, a simple variant of Unix and the platform used by Linus Torvalds to develop Linux. Although this book does not come with any source code, he illustrates many of his points with code fragments (C, usually with Unix system calls). The first half of Modern Operating Systems focuses on traditional operating systems concepts: processes, deadlocks, memory management, I/O, and file systems. There is nothing groundbreaking in these early chapters, but all topics are well covered, each including sections on current research and a set of student problems. It is enlightening to read Tanenbaum's explanations of the design decisions made by past operating systems gurus, including his view that additional research on the problem of deadlocks is impractical except for "keeping otherwise unemployed graph theorists off the streets." It is the second half of the book that differentiates itself from older operating systems texts. Here, each chapter describes an element of what constitutes a modern operating system--awareness of multimedia applications, multiple processors, computer networks, and a high level of security. The chapter on multimedia functionality focuses on such features as handling massive files and providing video-on-demand. Included in the discussion on multiprocessor platforms are clustered computers and distributed computing. Finally, the importance of security is discussed--a lively enumeration of the scores of ways operating systems can be vulnerable to attack, from password security to computer viruses and Internet worms. Included at the end of the book are case studies of two popular operating systems: Unix/Linux and Windows 2000. There is a bias toward the Unix/Linux approach, not surprising given the author's experience and academic bent, but this bias does not detract from Tanenbaum's analysis. Both operating systems are dissected, describing how each implements processes, file systems, memory management, and other operating system fundamentals. Tanenbaum's mantra is simple, accessible operating system design. Given that modern operating systems have extensive features, he is forced to reconcile physical size with simplicity. Toward this end, he makes frequent references to the Frederick Brooks classic The Mythical Man-Month for wisdom on managing large, complex software development projects. He finds both Windows 2000 and Unix/Linux guilty of being too complicated--with a particular skewering of Windows 2000 and its "mammoth Win32 API." A primary culprit is the attempt to make operating systems more "user-friendly," which Tanenbaum views as an excuse for bloated code. The solution is to have smart people, the smallest possible team, and well-defined interactions between various operating systems components. Future operating system design will benefit if the advice in this book is taken to heart. --Pete Ostenson
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Microelectronics
Jacob Millman - 1979
With pedagogical use of second color, it covers devices in one place so that circuit characteristics are developed early.
Big Java
Cay S. Horstmann - 2002
Thoroughly updated to include Java 6, the Third Edition of Horstmann's bestselling text helps you absorb computing concepts and programming principles, develop strong problem-solving skills, and become a better programmer, all while exploring the elements of Java that are needed to write real-life programs. A top-notch introductory text for beginners, Big Java, Third Edition is also a thorough reference for students and professionals alike to Java technologies, Internet programming, database access, and many other areas of computer science.Features of the Third Edition: The 'Objects Gradual' approach leads you into object-oriented thinking step-by-step, from using classes, implementing simple methods, all the way to designing your own object-oriented programs. A strong emphasis on test-driven development encourages you to consider outcomes as you write programming code so you design better, more usable programs Helpful "Testing Track" introduces techniques and tools step by step, ensuring that you master one before moving on to the next New teaching and learning tools in WileyPLUS--including a unique assignment checker that enables you to test your programming problems online before you submit them for a grade Graphics topics are developed gradually throughout the text, conveniently highlighted in separate color-coded sections Updated coverage is fully compatible with Java 5 and includes a discussion of the latest Java 6 features
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Artificial Intelligence: A Modern Approach
Stuart Russell - 1994
The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa