A Beautiful Question: Finding Nature's Deep Design


Frank Wilczek - 2015
    Wilczek’s groundbreaking work in quantum physics was inspired by his intuition to look for a deeper order of beauty in nature. In fact, every major advance in his career came from this intuition: to assume that the universe embodies beautiful forms, forms whose hallmarks are symmetry—harmony, balance, proportion—and economy. There are other meanings of “beauty,” but this is the deep logic of the universe—and it is no accident that it is also at the heart of what we find aesthetically pleasing and inspiring.Wilczek is hardly alone among great scientists in charting his course using beauty as his compass. As he reveals in A Beautiful Question, this has been the heart of scientific pursuit from Pythagoras, the ancient Greek who was the first to argue that “all things are number,” to Galileo, Newton, Maxwell, Einstein, and into the deep waters of twentiethcentury physics. Though the ancients weren’t right about everything, their ardent belief in the music of the spheres has proved true down to the quantum level. Indeed, Wilczek explores just how intertwined our ideas about beauty and art are with our scientific understanding of the cosmos.Wilczek brings us right to the edge of knowledge today, where the core insights of even the craziest quantum ideas apply principles we all understand. The equations for atoms and light are almost literally the same equations that govern musical instruments and sound; the subatomic particles that are responsible for most of our mass are determined by simple geometric symmetries. The universe itself, suggests Wilczek, seems to want to embody beautiful and elegant forms. Perhaps this force is the pure elegance of numbers, perhaps the work of a higher being, or somewhere between. Either way, we don’t depart from the infinite and infinitesimal after all; we’re profoundly connected to them, and we connect them. When we find that our sense of beauty is realized in the physical world, we are discovering something about the world, but also something about ourselves.Gorgeously illustrated, A Beautiful Question is a mind-shifting book that braids the age-old quest for beauty and the age-old quest for truth into a thrilling synthesis. It is a dazzling and important work from one of our best thinkers, whose humor and infectious sense of wonder animate every page. Yes: The world is a work of art, and its deepest truths are ones we already feel, as if they were somehow written in our souls.

The Book of Numbers: The Secret of Numbers and How They Changed the World


Peter J. Bentley - 2008
    Indeed, numbers are part of every discipline in the sciences and the arts.With 350 illustrations, including diagrams, photographs and computer imagery, the book chronicles the centuries-long search for the meaning of numbers by famous and lesser-known mathematicians, and explains the puzzling aspects of the mathematical world. Topics include:The earliest ideas of numbers and counting Patterns, logic, calculating Natural, perfect, amicable and prime numbers Numerology, the power of numbers, superstition The computer, the Enigma Code Infinity, the speed of light, relativity Complex numbers The Big Bang and Chaos theories The Philosopher's Stone. The Book of Numbers shows enthusiastically that numbers are neither boring nor dull but rather involve intriguing connections, rivalries, secret documents and even mysterious deaths.

Imagining Numbers


Barry Mazur - 2002
    This book reveals how anyone can begin to visualize the enigmatic 'imaginary numbers' that first baffled mathematicians in the 16th century.

Fields of Color: The theory that escaped Einstein


Rodney A. Brooks - 2010
    QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.

The Einstein Paradox: And Other Science Mysteries Solved By Sherlock Holmes


Colin Bruce - 1997
    Murder on a royal train. Divers dead of heatstroke at the bottom of an icy sea. An epidemic of insanity among the world's top scientists. This is the story of the great paradigm shifts of science, told as never before: in Sherlock Holmes adventures set amid the grandeur and squalor of Victorian London. Holmes, Watson, and other beloved characters created by Arthur Conan Doyle are challenged by mysteries, each of which hinges on a scientific paradox or principle. Colin Bruce has recreated the atmosphere of the original Sherlock Holmes stories to give a truly compulsive read. You won't even realize you've learned something until it's too late!

Math Through the Ages: A Gentle History for Teachers and Others


William P. Berlinghoff - 2002
    Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."

Broca's Brain: Reflections on the Romance of Science


Carl Sagan - 1979
    In his delightfully down-to-earth style, he explores & explains a mind-boggling future of intelligent robots, extraterrestrial life & its consquences, & other provocative, fascinating quandries of the future we want to see today.

Mathematics for the Million: How to Master the Magic of Numbers


Lancelot Hogben - 1937
    His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.

History of Astronomy


George Forbes - 1909
    Purchasers are entitled to a free trial membership in the General Books Club where they can select from more than a million books without charge. Subjects: Astronomy; History / General; Juvenile Nonfiction / Science

Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think


David Lindley - 1996
    Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.

Advanced Engineering Mathematics


Dennis G. Zill - 1992
    A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0

Spacetime Physics


Edwin F. Taylor - 1966
    Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars.  The chapter on general relativity with new material on gravity waves, black holes, and cosmology.

Heavenly Intrigue: Johannes Kepler, Tycho Brahe, and the Murder Behind One of History's Greatest Scientific Discoveries


Joshua Gilder - 2004
    That collaboration would mark the dawn of modern science . . . and end in murder.Johannes Kepler changed forever our understanding of the universe with his three laws of planetary motion. He demolished the ancient model of planets moving in circular orbits and laid the foundation for the universal law of gravitation, setting physics on the course of revelation it follows to this day. Kepler was one of the greatest astronomers of all time. Yet if it hadn't been for the now lesser-known Tycho Brahe, the man for whom Kepler apprenticed, Kepler would be a mere footnote in today's science books. Brahe was the Imperial Mathematician at the court of the Holy Roman Emperor in Prague and the most famous astronomer of his era. He was one of the first great systematic empirical scientists and one of the earliest founders of the modern scientific method. His forty years of planetary observations—an unparalleled treasure of empirical data—contained the key to Kepler's historic breakthrough. But those observations would become available to Kepler only after Brahe's death. This groundbreaking history portrays the turbulent collaboration between these two astronomers at the turn of the seventeenth century and their shattering discoveries that would mark the transition from medieval to modern science. But that is only half the story. Based on recent forensic evidence (analyzed here for the first time) and original research into medieval and Renaissance alchemy—all buttressed by in-depth interviews with leading historians, scientists, and medical specialists—the authors have put together shocking and compelling evidence that Tycho Brahe did not die of natural causes, as has been believed for four hundred years. He was systematically poisoned—most likely by his assistant, Johannes Kepler. An epic tale of murder and scientific discovery, Heavenly Intrigue reveals the dark side of one of history’s most brilliant minds and tells the story of court politics, personal intrigue, and superstition that surrounded the protean invention of two great astronomers and their quest to find truth and beauty in the heavens above.

The Poincaré Conjecture: In Search of the Shape of the Universe


Donal O'Shea - 2007
    He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.

Mathematical Methods for Physicists


George B. Arfken - 1970
    This work includes differential forms and the elegant forms of Maxwell's equations, and a chapter on probability and statistics. It also illustrates and proves mathematical relations.