Book picks similar to
Latex for Everyone by Jane Hahn
computers
mathematics
software
tex
Doing Math with Python
Amit Saha - 2015
Python is easy to learn, and it's perfect for exploring topics like statistics, geometry, probability, and calculus. You’ll learn to write programs to find derivatives, solve equations graphically, manipulate algebraic expressions, even examine projectile motion.Rather than crank through tedious calculations by hand, you'll learn how to use Python functions and modules to handle the number crunching while you focus on the principles behind the math. Exercises throughout teach fundamental programming concepts, like using functions, handling user input, and reading and manipulating data. As you learn to think computationally, you'll discover new ways to explore and think about math, and gain valuable programming skills that you can use to continue your study of math and computer science.If you’re interested in math but have yet to dip into programming, you’ll find that Python makes it easy to go deeper into the subject—let Python handle the tedious work while you spend more time on the math.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Go in Practice
Matt Butcher - 2015
Following a cookbook-style Problem/Solution/Discussion format, this practical handbook builds on the foundational concepts of the Go language and introduces specific strategies you can use in your day-to-day applications. You'll learn techniques for building web services, using Go in the cloud, testing and debugging, routing, network applications, and much more.
Algorithms
Sanjoy Dasgupta - 2006
Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Data Jujitsu: The Art of Turning Data into Product
D.J. Patil - 2012
Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu.Learn how to use a problem's "weight" against itself to:Break down seemingly complex data problems into simplified partsUse alternative data analysis techniques to examine themUse human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.
HTML for the World Wide Web with XHTML and CSS (Visual QuickStart Guide)
Elizabeth Castro - 2002
The task-based approach teaches readers how to combine HTML and CSS to create sharp and consistent Web pages.
The Art of R Programming: A Tour of Statistical Software Design
Norman Matloff - 2011
No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.
Cloud Computing for Dummies
Judith Hurwitz - 2009
If you've been put in charge of implementing cloud computing, this straightforward, plain-English guide clears up the confusion and helps you get your plan in place.You'll learn how cloud computing enables you to run a more green IT infrastructure, and access technology-enabled services from the Internet ("in the cloud") without having to understand, manage, or invest in the technology infrastructure that supports them. You'll also find out what you need to consider when implementing a plan, how to handle security issues, and more.Cloud computing is a way for businesses to take advantage of storage and virtual services through the Internet, saving money on infrastructure and support This book provides a clear definition of cloud computing from the utility computing standpoint and also addresses security concerns Offers practical guidance on delivering and managing cloud computing services effectively and efficiently Presents a proactive and pragmatic approach to implementing cloud computing in any organization Helps IT managers and staff understand the benefits and challenges of cloud computing, how to select a service, and what's involved in getting it up and running Highly experienced author team consults and gives presentations on emerging technologies Cloud Computing For Dummies gets straight to the point, providing the practical information you need to know.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Ejb 3 in Action
Debu Panda - 2007
This book builds on the contributions and strengths of seminal technologies like Spring, Hibernate, and TopLink.EJB 3 is the most important innovation introduced in Java EE 5.0. EJB 3 simplifies enterprise development, abandoning the complex EJB 2.x model in favor of a lightweight POJO framework. The new API represents a fresh perspective on EJB without sacrificing the mission of enabling business application developers to create robust, scalable, standards-based solutions.EJB 3 in Action is a fast-paced tutorial, geared toward helping you learn EJB 3 and the Java Persistence API quickly and easily. For newcomers to EJB, this book provides a solid foundation in EJB. For the developer moving to EJB 3 from EJB 2, this book addresses the changes both in the EJB API and in the way the developer should approach EJB and persistence.
Introduction to Information Retrieval
Christopher D. Manning - 2008
Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.
Schaum's Outline of Programming with C
Byron S. Gottfried - 1989
Includes some discussion of the Turbo C++ operating environment, as well as useful information on operators and expressions, data input and output, control sttements, functions, program structure, and arrays.
MCTS Self-Paced Training Kit (Exam 70-536): Microsoft® .NET Framework 2.0�Application Development Foundation: Microsoft .NET Framework 2.0--Application Development Foundation
Tony Northrup - 2006
Work at your own pace through a series of lessons and reviews that fully cover each exam objective. Then, reinforce what you’ve learned by applying your knowledge to real-world case scenarios and labs. This official Microsoft study guide is designed to help you make the most of your study time.Maximize your performance on the exam by learning to:Use system types, collections, and generics to help manage data Validate input, reformat text, and extract data with regular expressions Develop services, application domains, and multithreaded applications Enhance your application by adding graphics and images Implement code access security, role-based security, and data encryption Work with serialization and reflection techniques Instrument your applications with logging and tracing Interact with legacy code using COM Interop and PInvoke Practice TestsAssess your skills with practice tests on CD. You can work through hundreds of questions using multiple testing modes to meet your specific learning needs. You get detailed explanations for right and wrong answers—including a customized learning path that describes how and where to focus your studies.Your kit includes:15% exam discount from Microsoft. (Limited time offer). Details inside. Official self-paced study guide. Practice tests with multiple, customizable testing options and a learning plan based on your results. 450 practice and review questions. Case scenarios and lab exercises. Code samples on CD. 90-day evaluation version of Microsoft Visual Studio 2005 Professional Edition. Fully searchable eBook. A Note Regarding the CD or DVDThe print version of this book ships with a CD or DVD. For those customers purchasing one of the digital formats in which this book is available, we are pleased to offer the CD/DVD content as a free download via O'Reilly Media's Digital Distribution services. To download this content, please visit O'Reilly's web site, search for the title of this book to find its catalog page, and click on the link below the cover image (Examples, Companion Content, or Practice Files). Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.