Warmth Disperses and Time Passes: The History of Heat


Hans Christian Von Baeyer - 1998
    With his trademark elegant prose, eye for lively detail, and gift for lucid explanation, Professor von Baeyer turns the contemplation of a cooling coffee cup into a beguiling portrait of the birth of a science with relevance to almost every aspect of our lives.

Einstein's Masterwork: 1915 and the General Theory of Relativity


John Gribbin - 2015
    Einstein himself said it was “the most valuable theory of my life,” and “of incomparable beauty.” It describes the evolution of the universe, black holes, the behavior of orbiting neutron stars, and why clocks run slower on the surface of the earth than in space. It even suggests the possibility of time travel.And yet when we think of Einstein's breakthrough year, we think instead of 1905, the year of Einstein's Special Theory of Relativity and his equation E=mc2, as his annus mirabilis, even though the Special Theory has a narrower focus.Today the General Theory is overshadowed by these achievements, regarded as 'too difficult' for ordinary mortals to comprehend. In Einstein's Masterwork, John Gribbin puts Einstein's astonishing breakthrough in the context of his life and work, and makes it clear why his greatest year was indeed 1915 and his General Theory his true masterpiece.

Statistical Rethinking: A Bayesian Course with Examples in R and Stan


Richard McElreath - 2015
    Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Book of Proof


Richard Hammack - 2009
    It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.

Multivariable Calculus


James Stewart - 1991
    In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.

The Wizard of Quarks: A Fantasy of Particle Physics


Robert Gilmore - 2000
    This time physicist Robert Gilmore takes us on a journey with Dorothy, following the yellow building block road through the land of the Wizard of Quarks. Using characters and situations based on the Wizard of Oz story, we learn along the way about the fascinating world of particle physics. Classes of particles, from quarks to leptons are shown in an atomic garden, where atoms and molecules are produced. See how Dorothy, The Tin Geek, and the Cowardly Lion experience the bizarre world of subatomic particles.

Astronomy


Andrew Fraknoi - 2012
    The book begins with relevant scientific fundamentals and progresses through an exploration of the solar system, stars, galaxies, and cosmology. The Astronomy textbook builds student understanding through the use of relevant analogies, clear and non-technical explanations, and rich illustrations. Mathematics is included in a flexible manner to meet the needs of individual instructors.

Quantum Field Theory for the Gifted Amateur


Tom Lancaster - 2014
    Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in detail. Using numerous worked examples, diagrams, and careful physically motivated explanations, this book will smooth the path towards understanding the radically different and revolutionary view of the physical world that quantum field theory provides, and which all physicists should have the opportunity to experience.To request a copy of the Solutions Manual, visit http: //global.oup.com/uk/academic/physics/ad....

Physics I for Dummies


Steven Holzner - 2011
    While this version features an older Dummies cover and design, the content is the same as the new release and should not be considered a different product. The fun and easy way to get up to speed on the basic concepts of physics For high school and undergraduate students alike, physics classes are recommended or required courses for a wide variety of majors, and continue to be a challenging and often confusing course.Physics I For Dummies tracks specifically to an introductory course and, keeping with the traditionally easy-to-follow Dummies style, teaches you the basic principles and formulas in a clear and concise manner, proving that you don't have to be Einstein to understand physics!Explains the basic principles in a simple, clear, and entertaining fashion New edition includes updated examples and explanations, as well as the newest discoveries in the field Contains the newest teaching techniques If just thinking about the laws of physics makes your head spin, this hands-on, friendly guide gets you out of the black hole and sheds light on this often-intimidating subject.

Dice World: Science and Life in a Random Universe


Brian Clegg - 2013
    Admittedly real life wasn’t like that. But only, they argued, because we didn’t have enough data to be certain.Then the cracks began to appear. It proved impossible to predict exactly how three planets orbiting each other would move. Meteorologists discovered that the weather was truly chaotic – so dependent on small variations that it could never be predicted for more than a few days out. And the final nail in the coffin was quantum theory, showing that everything in the universe has probability at its heart.That gives human beings a problem. We understand the world through patterns. Randomness and probability will always be alien to us. But it’s time to plunge into this fascinating, shadowy world, because randomness crops up everywhere. Probability and statistics are the only way to get a grip on nature’s workings. They may even seal the fate of free will and predict how the universe will end.Forget Newton’s clockwork universe. Welcome to Dice World.

Math Through the Ages: A Gentle History for Teachers and Others


William P. Berlinghoff - 2002
    Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."

Symmetry and the Monster: One of the Greatest Quests of Mathematics


Mark Ronan - 2006
    Now, in an exciting, fast-paced historical narrative ranging across two centuries, Mark Ronan takes us on an exhilarating tour of this final mathematical quest. Ronan describes how the quest to understand symmetry really began with the tragic young genius Evariste Galois, who died at the age of 20 in a duel. Galois, who spent the night before he died frantically scribbling his unpublished discoveries, used symmetry to understand algebraic equations, and he discovered that there were building blocks or atoms of symmetry. Most of these building blocks fit into a table, rather like the periodic table of elements, but mathematicians have found 26 exceptions. The biggest of these was dubbed the Monster--a giant snowflake in 196,884 dimensions. Ronan, who personally knows the individuals now working on this problem, reveals how the Monster was only dimly seen at first. As more and more mathematicians became involved, the Monster became clearer, and it was found to be not monstrous but a beautiful form that pointed out deep connections between symmetry, string theory, and the very fabric and form of the universe. This story of discovery involves extraordinary characters, and Mark Ronan brings these people to life, vividly recreating the growing excitement of what became the biggest joint project ever in the field of mathematics. Vibrantly written, Symmetry and the Monster is a must-read for all fans of popular science--and especially readers of such books as Fermat's Last Theorem.

What Is Relativity?: An Intuitive Introduction to Einstein's Ideas, and Why They Matter


Jeffrey O. Bennett - 2014
    Yet as bestselling author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in hand, Bennett begins an entertaining introduction to Einstein's theories, describing the amazing phenomena readers would actually experience if they took a trip through a black hole.The theory of relativity also gives us the cosmic speed limit of the speed of light, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: e = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe, and it is not "just a theory: " every major prediction of relativity has been tested to exquisite precision and its practical applications include the Global Positioning System (GPS). Bennett proves anyone can understand the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important not only to science but also to the way we view ourselves as human beings.

The Nature of Code


Daniel Shiffman - 2012
    Readers will progress from building a basic physics engine to creating intelligent moving objects and complex systems, setting the foundation for further experiments in generative design. Subjects covered include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. The book's examples are written in Processing, an open-source language and development environment built on top of the Java programming language. On the book's website (http://www.natureofcode.com), the examples run in the browser via Processing's JavaScript mode.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.