Book picks similar to
Django for Beginners: Build websites with Python and Django by William S. Vincent
programming
python
django
1-programmering
A Smarter Way to Learn HTML & CSS: Learn it faster. Remember it longer.
Mark Myers - 2015
Short chapters are paired with free interactive online exercises to teach the fundamentals of HTML and CSS. Written for beginners, useful for experienced developers who want to sharpen their skills. Prepares the reader to code a website of medium complexity. The learner spends two to three times as long practicing as he does reading. Based on cognitive research showing that retention increases 400 percent when learners are challenged to retrieve the information they just read. Explanations are in plain, nontechnical English that people of all backgrounds can readily understand. With ample coding examples and illustrations.
Copying and Pasting from Stack Overflow
Vinit Nayak - 2016
Mastering this art will not only make you the most desired developer in the market, but it will transform the craziest deadline into "Consider it done, Sir".
Python in a Nutshell
Alex Martelli - 2003
Demonstrates the programming language's strength as a Web development tool, covering syntax, data types, built-ins, the Python standard module library, and real world examples
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
JavaScript: The Definitive Guide
David Flanagan - 1996
This book is both an example-driven programmer's guide and a keep-on-your-desk reference, with new chapters that explain everything you need to know to get the most out of JavaScript, including:Scripted HTTP and Ajax XML processing Client-side graphics using the canvas tag Namespaces in JavaScript--essential when writing complex programs Classes, closures, persistence, Flash, and JavaScript embedded in Java applicationsPart I explains the core JavaScript language in detail. If you are new to JavaScript, it will teach you the language. If you are already a JavaScript programmer, Part I will sharpen your skills and deepen your understanding of the language.Part II explains the scripting environment provided by web browsers, with a focus on DOM scripting with unobtrusive JavaScript. The broad and deep coverage of client-side JavaScript is illustrated with many sophisticated examples that demonstrate how to:Generate a table of contents for an HTML document Display DHTML animations Automate form validation Draw dynamic pie charts Make HTML elements draggable Define keyboard shortcuts for web applications Create Ajax-enabled tool tips Use XPath and XSLT on XML documents loaded with Ajax And much morePart III is a complete reference for core JavaScript. It documents every class, object, constructor, method, function, property, and constant defined by JavaScript 1.5 and ECMAScript Version 3.Part IV is a reference for client-side JavaScript, covering legacy web browser APIs, the standard Level 2 DOM API, and emerging standards such as the XMLHttpRequest object and the canvas tag.More than 300,000 JavaScript programmers around the world have made this their indispensable reference book for building JavaScript applications."A must-have reference for expert JavaScript programmers...well-organized and detailed."-- Brendan Eich, creator of JavaScript
UNIX Power Tools
Jerry Peek - 1993
It also covers add-on utilities and how to take advantage of clever features in the most popular UNIX utilities.Loaded with even more practical advice about almost every aspect of UNIX, this edition addresses the technology that UNIX users face today, differing from the first edition in a number of important ways.First, it slants the blend of options and commands more toward the POSIX utilities, including the GNU versions; the bash and tcsh shells have greater coverage, but we've kept the first edition's emphasis on the core concepts of sh and csh that will help you use all UNIX shells; and, Perl is more important than awk these days, so we've de-emphasized awk in this edition.This is a browser's book...like a magazine that you don't read from start to finish, but leaf through repeatedly until you realize that you've read it all. The book is structured so that it bursts at the seams with cross references. Interesting "sidebars" explore syntax or point out other directions for exploration, including relevant technical details that might not be immediately apparent. You'll find articles abstracted from other O'Reilly books, new information that highlights program "tricks" and "gotchas," tips posted to the Net over the years, and other accumulated wisdom.The 53 chapters in this book discuss topics like file management, text editors, shell programming -- even office automation. Overall, there's plenty of material here to satisfy even the most voracious appetites. The bottom line? UNIX Power Tools is loaded with practical advice about almost every aspect of UNIX. It will help you think creatively about UNIX, and will help you get to the point where you can analyze your own problems. Your own solutions won't be far behind.The CD-ROM includes all of the scripts and aliases from the book, plus perl, GNU emacs, netpbm (graphics manipulation utilities), ispell,screen, the sc spreadsheet, and about 60 other freeware programs. In addition to the source code, all the software is precompiled for Sun4, Digital UNIX, IBM AIX, HP/UX, Red Hat Linux, Solaris, and SCO UNIX.
Programming Concurrency on the JVM
Venkat Subramaniam - 2011
Speedy and affordable multicore hardware is driving the demand for high-performing applications, and you can leverage the Java platform to bring these applications to life. Concurrency on the Java platform has evolved, from the synchronization model of JDK to software transactional memory (STM) and actor-based concurrency. This book is the first to show you all these concurrency styles so you can compare and choose what works best for your applications. You'll learn the benefits of each of these models, when and how to use them, and what their limitations are. Through hands-on exercises, you'll learn how to avoid shared mutable state and how to write good, elegant, explicit synchronization-free programs so you can create easy and safe concurrent applications. The techniques you learn in this book will take you from dreading concurrency to mastering and enjoying it. Best of all, you can work with Java or a JVM language of your choice - Clojure, JRuby, Groovy, or Scala - to reap the growing power of multicore hardware. If you are a Java programmer, you'd need JDK 1.5 or later and the Akka 1.0 library. In addition, if you program in Scala, Clojure, Groovy or JRuby you'd need the latest version of your preferred language. Groovy programmers will also need GPars.
Functional Thinking
Neal Ford - 2014
This practical guide from renowned software architect Neal Ford helps you transition from a Java-writing imperative programmer to a functional programmer, using Java, Clojure, and Scala as examples.Rather than focus on specific language features, Functional Thinking looks at a variety of common practices in OOP languages and then shows you how to solve the same problems with a functional language. For instance, you know how to achieve code-reuse in Java via mechanisms such as inheritance and polymorphism. Code reuse is also possible in functional languages, using high-order functions, composition, and multi-methods.Ford encourages you to value results over steps, so you can begin to think like a functional programmer. Expect your mind to be bent, but you’ll finish with a much better understanding of both the syntax and semantics of functional languages.
Go in Practice
Matt Butcher - 2015
Following a cookbook-style Problem/Solution/Discussion format, this practical handbook builds on the foundational concepts of the Go language and introduces specific strategies you can use in your day-to-day applications. You'll learn techniques for building web services, using Go in the cloud, testing and debugging, routing, network applications, and much more.
Data Modeling Essentials
Graeme Simsion - 1992
In order to enable students to apply the basics of data modeling to real models, the book addresses the realities of developing systems in real-world situations by assessing the merits of a variety of possible solutions as well as using language and diagramming methods that represent industry practice.This revised edition has been given significantly expanded coverage and reorganized for greater reader comprehension even as it retains its distinctive hallmarks of readability and usefulness. Beginning with the basics, the book provides a thorough grounding in theory before guiding the reader through the various stages of applied data modeling and database design. Later chapters address advanced subjects, including business rules, data warehousing, enterprise-wide modeling and data management. It includes an entirely new section discussing the development of logical and physical modeling, along with new material describing a powerful technique for model verification. It also provides an excellent resource for additional lectures and exercises.This text is the ideal reference for data modelers, data architects, database designers, DBAs, and systems analysts, as well as undergraduate and graduate-level students looking for a real-world perspective.
Hadoop: The Definitive Guide
Tom White - 2009
Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!
SQL Cookbook
Anthony Molinaro - 2005
You'd like to learn how to do more work with SQL inside the database before pushing data across the network to your applications. You'd like to take your SQL skills to the next level.Let's face it, SQL is a deceptively simple language to learn, and many database developers never go far beyond the simple statement: SELECT columns FROM table WHERE conditions. But there is so much more you can do with the language. In the SQL Cookbook, experienced SQL developer Anthony Molinaro shares his favorite SQL techniques and features. You'll learn about:Window functions, arguably the most significant enhancement to SQL in the past decade. If you're not using these, you're missing outPowerful, database-specific features such as SQL Server's PIVOT and UNPIVOT operators, Oracle's MODEL clause, and PostgreSQL's very useful GENERATE_SERIES functionPivoting rows into columns, reverse-pivoting columns into rows, using pivoting to facilitate inter-row calculations, and double-pivoting a result setBucketization, and why you should never use that term in Brooklyn.How to create histograms, summarize data into buckets, perform aggregations over a moving range of values, generate running-totals and subtotals, and other advanced, data warehousing techniquesThe technique of walking a string, which allows you to use SQL to parse through the characters, words, or delimited elements of a stringWritten in O'Reilly's popular Problem/Solution/Discussion style, the SQL Cookbook is sure to please. Anthony's credo is: When it comes down to it, we all go to work, we all have bills to pay, and we all want to go home at a reasonable time and enjoy what's still available of our days. The SQL Cookbook moves quickly from problem to solution, saving you time each step of the way.
Natural Language Processing with Python
Steven Bird - 2009
With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Python for Kids
Jason R. Briggs - 2012
Jason Briggs, author of the popular online tutorial "Snake Wrangling for Kids," begins with the basics of how to install Python and write simple commands. In bite-sized chapters, he instructs readers on the essentials of Python, including how to use Python's extensive standard library, the difference between strings and lists, and using for-loops and while-loops. By the end of the book, readers have built a game and created drawings with Python's graphics library, Turtle. Each chapter closes with fun and relevant exercises that challenge the reader to put their newly acquired knowledge to the test.
Problem Solving with Algorithms and Data Structures Using Python
Bradley N. Miller - 2005
It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.