Concepts in Thermal Physics


Stephen J. Blundell - 2006
    This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as diverse as stellar astrophysics, information and communication theory, condensed matter physics and climate change. Each chapter concludes with detailed exercises.

Advanced Inorganic Chemistry


F. Albert Cotton - 1972
    Like its predecessors, this updated Sixth Edition is organized around the periodic table of elements and provides a systematic treatment of the chemistry of all chemical elements and their compounds. It incorporates important recent developments with an emphasis on advances in the interpretation of structure, bonding, and reactivity.From the reviews of the Fifth Edition: "The first place to go when seeking general information about the chemistry of a particular element, especially when up-to-date, authoritative information is desired."--Journal of the American Chemical Society"Every student with a serious interest in inorganic chemistry should have [this book]."-- Journal of Chemical Education "A mine of information . . . an invaluable guide."-- Nature "The standard by which all other inorganic chemistry books are judged."-- Nouveau Journal de Chimie "A masterly overview of the chemistry of the elements."-- The Times of London Higher Education Supplement "A bonanza of information on important results and developments which could otherwise easily be overlooked in the general deluge of publications."-- Angewandte Chemie

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics [with MasteringPhysics]


Randall D. Knight - 2003
    0321513339 / 9780321513335 Physics for Scientists and Engineers: A Strategic Approach with Modern Physics and MasteringPhysicsâ�¢ Package consists of 0321513576 / 9780321513571 Student Workbook for Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 0321516397 / 9780321516398 MasteringPhysicsâ�¢ with E-book Student Access Kit for Physics for Scientists and Engineers: A Strategic Approach 0805327363 / 9780805327366 Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

Feynman's Rainbow: A Search for Beauty in Physics and in Life


Leonard Mlodinow - 2004
    Drawing on transcripts from their meetings during their time together at Cal Tech, Mlodinow shares Feynman's provocative thoughts and observations. At once a moving portrait of a friendship and an affecting account of Feynman's final, creative years, this book celebrates the inspiring legacy of one of the greatest thinkers of our time.

What Is Mathematics?: An Elementary Approach to Ideas and Methods


Richard Courant - 1941
    Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.

Einstein's Relativity and the Quantum Revolution: Modern Physics for Non-Scientists


Richard Wolfson - 2000
    Relativity and quantum physics touch the very basis of physical reality, altering our commonsense notions of space and time, cause and effect. Both have reputations for complexity. But the basic ideas behind relativity and quantum physics are, in fact, simple and comprehensible by anyone. As Professor Wolfson points out, the essence of relativity can be summed up in a single sentence: The laws of physics are the same for all observers in uniform motion. The same goes for quantum theory, which is based on the principle that the "stuff " of the universe-matter and energy-is not infinitely divisible but comes in discrete chunks called "quanta." Profound ... Beautiful ... Relevant Why should you care about these landmark theories? Because relativity and quantum physics are not only profound and beautiful ideas in their own right, they are also the gateway to understanding many of the latest science stories in the media. These are the stories about time travel, string theory, black holes, space telescopes, particle accelerators, and other cutting-edge developments. Consider these ideas: Although Einstein's theory of general relativity dates from 1914, it has not been possible to test certain predictions until recently. The Hubble Space Telescope is providing some of the most striking confirmations of the theory, including certain evidence for the existence of black holes, objects that warp space and time so that not even light can escape. Also, the expansion of the universe predicted by the theory of general relativity is now a known rate. General relativity also predicts an even weirder phenomenon called "wormholes" that offer shortcuts to remote reaches of time and space. According to Einstein's theory of special relativity, two twins would age at different rates if one left on a high-speed journey to a distant star and then returned. This experiment has actually been done, not with twins, but with an atomic clock flown around the world. Another fascinating experiment confirming that time slows as speed increases comes from measuring muons at the top and bottom of mountains. A seemingly absurd consequence of quantum mechanics, called "quantum tunneling," makes it possible for objects to materialize through impenetrable barriers. Quantum tunneling happens all the time on the subatomic scale and plays an important role in electronic devices and the nuclear processes that keep the sun shining. Some predictions about the expansion of the universe were so odd that Einstein himself tried to rewrite the mathematics in order to eliminate them. When Hubble discovered the expansion of the universe, Einstein called the revisions the biggest mistake he had ever made. An intriguing thought experiment called "Schrödinger's cat" suggests that a cat in an enclosed box is simultaneously alive and dead under experimental conditions involving quantum phenomena. From Aristotle to the Theory of Everything Professor Wolfson begins with a brief overview of theories of physical reality starting with Aristotle and culminating in Newtonian or "classical" physics. Then he outlines the logic that led to Einstein's theory of special relativity, and the simple yet far-reaching insight on which it rests. With that insight in mind, you move on to consider Einstein's theory of general relativity and its interpretation of gravitation in terms of the curvature of space and time. Professor Wolfson then shows how inquiry into matter at the atomic and subatomic scales led to quandaries that are resolved-or at least clarified-by quantum mechanics, a vision of physical reality so at odds with our experience that it nearly defies language. Bringing relativity and quantum mechanics into the same picture leads to hypotheses about the origin, development, and possible futures of the entire universe, and the possibility that physics can produce a "theory of everything" to account for all aspects of the physical world. Fascinating Incidents and Ideas Along the way, you'll explore these fascinating incidents and ideas: In the 1880s, Albert Michelson and Edward Morley conducted an experiment to determine the motion of the Earth relative to the ether, which was a supposedly imponderable substance pervading all of space. You'll learn about their experiment, its shocking result, and the resulting theoretical crisis. In 1905, a young Swiss patent clerk named Albert Einstein resolved the crisis by discarding the ether concept and asserting the principle of relativity-that the laws of physics are the same for all observers in uniform motion. Relativity implies that the time order of events can be different in different reference frames. Does this wreak havoc with cause and effect? And why does Einstein assert that nothing can go faster than light? Shortly after publishing his 1905 paper on special relativity, Einstein realized that his theory required a fundamental equivalence between mass and energy, which he expressed in the equation E=mc2. Among other things, this famous formula means that the energy contained in a single raisin could power a large city for a whole day. Historically, the path to general relativity followed Einstein's attempt to incorporate gravity into relativity theory, which led to his understanding of gravity not as a force, but as a local manifestation of geometry in curved spacetime. Quantum theory places severe limits on our ability to observe nature at the atomic scale because it implies that the act of observation necessarily disturbs the thing that is being observed. The result is Werner Heisenberg's famous "uncertainty principle." Are quarks, the particles that make up protons and neutrons, the truly elementary particles? What are the three fundamental forces that physicists identify as holding particles together? Could they be manifestations of a single, universal force? A Teaching Legend On his own Middlebury College campus, Professor Wolfson is a teaching legend with an infectious enthusiasm for his subject and a knack for conveying difficult concepts in a way that fosters true understanding. He is the author of an introductory text on physics, a contributor to the esteemed publication Scientific American, and a specialist in interpreting science for the nonspecialist. In this course, Professor Wolfson uses extensive illustrations and diagrams to help bring to life the theories and concepts that he discusses. Thus we highly recommend our DVD version, although Professor Wolfson is mindful of our audio students and carefully describes visual materials throughout his lectures. Professor Richard Wolfson on the Second Edition of Einstein's Relativity: "The first version of this course was produced in 1995. In this new version, I have chosen to spend more time on the philosophical interpretation of quantum physics, and on recent experiments relevant to that interpretation. I have also added a final lecture on the theory of everything and its possible implementation through string theory. The graphic presentations for the DVD version have also been extensively revised and enhanced. But the goal remains the same: to present the key ideas of modern physics in a way that makes them clear to the interested layperson."

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

No bullshit guide to math and physics


Ivan Savov - 2010
    It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.

The Philosophy of Space and Time


Hans Reichenbach - 1957
    A brilliantly clear and penetrating exposition of developments in physical science and mathematics brought about by the advent of non-Euclidean geometries, including in-depth coverage of the foundations of geometry, the theory of time, Einstein's theory of relativity and its consequences, other key topics.

Introduction to Classical Mechanics: With Problems and Solutions


David Morin - 2007
    It also explores more advanced topics, such as normal modes, the Lagrangian method, gyroscopic motion, fictitious forces, 4-vectors, and general relativity. It contains more than 250 problems with detailed solutions so students can easily check their understanding of the topic. There are also over 350 unworked exercises which are ideal for homework assignments. Password protected solutions are available to instructors at www.cambridge.org/9780521876223. The vast number of problems alone makes it an ideal supplementary text for all levels of undergraduate physics courses in classical mechanics. Remarks are scattered throughout the text, discussing issues that are often glossed over in other textbooks, and it is thoroughly illustrated with more than 600 figures to help demonstrate key concepts.

The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics


Clifford A. Pickover - 2009
    Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, it covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic gets a lavishly illustrated spread with stunning color art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.

The Philosophical Writings of Niels Bohr, Vol. 1: Atomic Theory and the Description of Nature


Niels Bohr - 1931
    First published in 1934, and reprinted in 1961, this collection contains four articles and an introductory survey. Originally written for various journals during the 1920s, the articles concern themselves with the epistemological significance of discoveries in quantum physics.

A First Course in Abstract Algebra


John B. Fraleigh - 1967
    Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.

Nothing: A Very Short Introduction


Frank Close - 2009
    Readers will find an enlightening history of the vacuum: how the efforts to make a better vacuum led to the discovery of the electron; the ideas of Newton, Mach, and Einstein on the nature of space and time; the mysterious aether and how Einstein did away with it; and the latest ideas that the vacuum is filled with the Higgs field. The story ranges from the absolute zero of temperature and the seething vacuum of virtual particles and anti-particles that fills space, to the extreme heat and energy of the early universe. About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Math with Bad Drawings


Ben Orlin - 2018
     In MATH WITH BAD DRAWINGS, Ben Orlin answers math's three big questions: Why do I need to learn this? When am I ever going to use it? Why is it so hard? The answers come in various forms-cartoons, drawings, jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone.Eschewing the tired old curriculum that begins in the wading pool of addition and subtraction and progresses to the shark infested waters of calculus (AKA the Great Weed Out Course), Orlin instead shows us how to think like a mathematician by teaching us a new game of Tic-Tac-Toe, how to understand an economic crisis by rolling a pair of dice, and the mathematical reason why you should never buy a second lottery ticket. Every example in the book is illustrated with his trademark "bad drawings," which convey both his humor and his message with perfect pitch and clarity. Organized by unconventional but compelling topics such as "Statistics: The Fine Art of Honest Lying," "Design: The Geometry of Stuff That Works," and "Probability: The Mathematics of Maybe," MATH WITH BAD DRAWINGS is a perfect read for fans of illustrated popular science.