Book picks similar to
Visualizing Data: Exploring and Explaining Data with the Processing Environment by Ben Fry
programming
design
visualization
non-fiction
Visual Explanations
Edward R. Tufte - 1997
Through computers, the Internet, the media, and even our daily newspapers, we are awash in a seemingly endless stream of charts, maps, infographics, diagrams, and data. Visual Explanations is a navigational guide through this turbulent sea of information. The book is an essential reference for anyone involved in graphic, web, or multimedia design, as well as for educators and lecturers who use graphics in presentations or classes.Jacket design: Dmitry Krasny.Other artwork by Bonnie Scranton, Dmitry Krasny, and Weilin Wu.
Information Dashboard Design: The Effective Visual Communication of Data
Stephen Few - 2006
Although dashboards are potentially powerful, this potential is rarely realized. The greatest display technology in the world won't solve this if you fail to use effective visual design. And if a dashboard fails to tell you precisely what you need to know in an instant, you'll never use it, even if it's filled with cute gauges, meters, and traffic lights. Don't let your investment in dashboard technology go to waste.This book will teach you the visual design skills you need to create dashboards that communicate clearly, rapidly, and compellingly. Information Dashboard Design will explain how to:Avoid the thirteen mistakes common to dashboard design Provide viewers with the information they need quickly and clearly Apply what we now know about visual perception to the visual presentation of information Minimize distractions, cliches, and unnecessary embellishments that create confusion Organize business information to support meaning and usability Create an aesthetically pleasing viewing experience Maintain consistency of design to provide accurate interpretation Optimize the power of dashboard technology by pairing it with visual effectiveness Stephen Few has over 20 years of experience as an IT innovator, consultant, and educator. As Principal of the consultancy Perceptual Edge, Stephen focuses on data visualization for analyzing and communicating quantitative business information. He provides consulting and training services, speaks frequently at conferences, and teaches in the MBA program at the University of California in Berkeley. He is also the author of Show Me the Numbers: Designing Tables and Graphs to Enlighten. Visit his website at www.perceptualedge.com.
Visualize This: The FlowingData Guide to Design, Visualization, and Statistics
Nathan Yau - 2011
Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships.Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.
Interactive Data Visualization for the Web
Scott Murray - 2013
It’s easy and fun with this practical, hands-on introduction. Author Scott Murray teaches you the fundamental concepts and methods of D3, a JavaScript library that lets you express data visually in a web browser. Along the way, you’ll expand your web programming skills, using tools such as HTML and JavaScript.This step-by-step guide is ideal whether you’re a designer or visual artist with no programming experience, a reporter exploring the new frontier of data journalism, or anyone who wants to visualize and share data.Learn HTML, CSS, JavaScript, and SVG basicsDynamically generate web page elements from your data—and choose visual encoding rules to style themCreate bar charts, scatter plots, pie charts, stacked bar charts, and force-directed layoutsUse smooth, animated transitions to show changes in your dataIntroduce interactivity to help users explore data through different viewsCreate customized geographic maps with dataExplore hands-on with downloadable code and over 100 examples
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
Processing: A Programming Handbook for Visual Designers and Artists
Casey Reas - 2007
This book is an introduction to the concepts of computer programming within the context of the visual arts. It offers a comprehensive reference and text for Processing (www.processing.org), an open-source programming language that can be used by students, artists, designers, architects, researchers, and anyone who wants to program images, animation, and interactivity. The ideas in Processing have been tested in classrooms, workshops, and arts institutions, including UCLA, Carnegie Mellon, New York University, and Harvard University. Tutorial units make up the bulk of the book and introduce the syntax and concepts of software (including variables, functions, and object-oriented programming), cover such topics as photography and drawing in relation to software, and feature many short, prototypical example programs with related images and explanations. More advanced professional projects from such domains as animation, performance, and typography are discussed in interviews with their creators. "Extensions" present concise introductions to further areas of investigation, including computer vision, sound, and electronics. Appendixes, references to additional material, and a glossary contain additional technical details. Processing can be used by reading each unit in order, or by following each category from the beginning of the book to the end. The Processing software and all of the code presented can be downloaded and run for future exploration.Includes essays by Alexander R. Galloway, Golan Levin, R. Luke DuBois, Simon Greenwold, Francis Li, and Hernando Barragan and interviews with Jared Tarbell, Martin Wattenberg, James Paterson, Erik van Blockland, Ed Burton, Josh On, Jurg Lehni, Auriea Harvey and Michael Samyn, Mathew Cullen and Grady Hall, Bob Sabiston, Jennifer Steinkamp, Ruth Jarman and Joseph Gerhardt, Sue Costabile, Chris Csikszentmihalyi, Golan Levin and Zachary Lieberman, and Mark Hansen.Casey Reas is Associate Professor in the Design Media Arts Department at the University of California, Los Angeles. Ben Fry is Nierenburg Chair of Design in the School of Design at Carnegie Mellon University, 2006-2007."
Beautiful Data: The Stories Behind Elegant Data Solutions (Theory In Practice, #31)
Toby Segaran - 2009
Join 39 contributors as they explain how they developed simple and elegant solutions on projects ranging from the Mars lander to a Radiohead video.With Beautiful Data, you will: Explore the opportunities and challenges involved in working with the vast number of datasets made available by the Web Learn how to visualize trends in urban crime, using maps and data mashups Discover the challenges of designing a data processing system that works within the constraints of space travel Learn how crowdsourcing and transparency have combined to advance the state of drug research Understand how new data can automatically trigger alerts when it matches or overlaps pre-existing data Learn about the massive infrastructure required to create, capture, and process DNA data That's only small sample of what you'll find in Beautiful Data. For anyone who handles data, this is a truly fascinating book. Contributors include:Nathan Yau Jonathan Follett and Matt Holm J.M. Hughes Raghu Ramakrishnan, Brian Cooper, and Utkarsh Srivastava Jeff Hammerbacher Jason Dykes and Jo Wood Jeff Jonas and Lisa Sokol Jud Valeski Alon Halevy and Jayant Madhavan Aaron Koblin with Valdean Klump Michal Migurski Jeff Heer Coco Krumme Peter Norvig Matt Wood and Ben Blackburne Jean-Claude Bradley, Rajarshi Guha, Andrew Lang, Pierre Lindenbaum, Cameron Neylon, Antony Williams, and Egon Willighagen Lukas Biewald and Brendan O'Connor Hadley Wickham, Deborah Swayne, and David Poole Andrew Gelman, Jonathan P. Kastellec, and Yair Ghitza Toby Segaran
Storytelling with Data: A Data Visualization Guide for Business Professionals
Cole Nussbaumer Knaflic - 2015
You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!
Dear Data
Giorgia Lupi - 2016
The result is described as “a thought-provoking visual feast”.
Information Architecture for the World Wide Web: Designing Large-Scale Web Sites
Peter Morville - 1998
How do you present large volumes of information to people who need to find what they're looking for quickly? This classic primer shows information architects, designers, and web site developers how to build large-scale and maintainable web sites that are appealing and easy to navigate. The new edition is thoroughly updated to address emerging technologies -- with recent examples, new scenarios, and information on best practices -- while maintaining its focus on fundamentals. With topics that range from aesthetics to mechanics, Information Architecture for the World Wide Web explains how to create interfaces that users can understand right away. Inside, you'll find:* An overview of information architecture for both newcomers and experienced practitioners* The fundamental components of an architecture, illustrating the interconnected nature of these systems. Updated, with updates for tagging, folksonomies, social classification, and guided navigation* Tools, techniques, and methods that take you from research to strategy and design to implementation. This edition discusses blueprints, wireframes and the role of diagrams in the design phase* A series of short essays that provide practical tips and philosophical advice for those who work on information architecture* The business context of practicing and promoting information architecture, including recent lessons on how to handle enterprise architecture* Case studies on the evolution of two large and very different information architectures, illustrating best practices along the way* How do you document the rich interfaces of web applications? How do you design for multiple platforms and mobile devices? With emphasis on goals and approaches over tactics or technologies, this enormously popular book gives you knowledge about information architecture with a framework that allows you to learn new approaches -- and unlearn outmoded ones.
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Beautiful Visualization: Looking at Data through the Eyes of Experts
Julie Steele - 2010
Think of the familiar map of the New York City subway system, or a diagram of the human brain. Successful visualizations are beautiful not only for their aesthetic design, but also for elegant layers of detail that efficiently generate insight and new understanding.This book examines the methods of two dozen visualization experts who approach their projects from a variety of perspectives -- as artists, designers, commentators, scientists, analysts, statisticians, and more. Together they demonstrate how visualization can help us make sense of the world.Explore the importance of storytelling with a simple visualization exerciseLearn how color conveys information that our brains recognize before we're fully aware of itDiscover how the books we buy and the people we associate with reveal clues to our deeper selvesRecognize a method to the madness of air travel with a visualization of civilian air trafficFind out how researchers investigate unknown phenomena, from initial sketches to published papers Contributors include:Nick Bilton, Michael E. Driscoll, Jonathan Feinberg, Danyel Fisher, Jessica Hagy, Gregor Hochmuth, Todd Holloway, Noah Iliinsky, Eddie Jabbour, Valdean Klump, Aaron Koblin, Robert Kosara, Valdis Krebs, JoAnn Kuchera-Morin et al., Andrew Odewahn, Adam Perer, Anders Persson, Maximilian Schich, Matthias Shapiro, Julie Steele, Moritz Stefaner, Jer Thorp, Fernanda Viegas, Martin Wattenberg, and Michael Young.
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
The Functional Art: An Introduction to Information Graphics and Visualization
Alberto Cairo - 2011
With the right tools, we can start to make sense of all this data to see patterns and trends that would otherwise be invisible to us. By transforming numbers into graphical shapes, we allow readers to understand the stories those numbers hide. In this practical introduction to understanding and using information graphics, you'll learn how to use data visualizations as tools to see beyond lists of numbers and variables and achieve new insights into the complex world around us. Regardless of the kind of data you're working with-business, science, politics, sports, or even your own personal finances-this book will show you how to use statistical charts, maps, and explanation diagrams to spot the stories in the data and learn new things from it.You'll also get to peek into the creative process of some of the world's most talented designers and visual journalists, including Conde Nast Traveler's John Grimwade, National Geographic Magazine's Fernando Baptista, The New York Times' Steve Duenes, The Washington Post's Hannah Fairfield, Hans Rosling of the Gapminder Foundation, Stanford's Geoff McGhee, and European superstars Moritz Stefaner, Jan Willem Tulp, Stefanie Posavec, and Gregor Aisch. The book also includes a DVD-ROM containing over 90 minutes of video lessons that expand on core concepts explained within the book and includes even more inspirational information graphics from the world's leading designers.The first book to offer a broad, hands-on introduction to information graphics and visualization, The Functional Art reveals:- Why data visualization should be thought of as "functional art" rather than fine art - How to use color, type, and other graphic tools to make your information graphics more effective, not just better looking - The science of how our brains perceive and remember information - Best practices for creating interactive information graphics - A comprehensive look at the creative process behind successful information graphics - An extensive gallery of inspirational work from the world's top designers and visual artistsOn the DVD-ROM: In this introductory video course on information graphics, Alberto Cairo goes into greater detail with even more visual examples of how to create effective information graphics that function as practical tools for aiding perception. You'll learn how to: incorporate basic design principles in your visualizations, create simple interfaces for interactive graphics, and choose the appropriate type of graphic forms for your data. Cairo also deconstructs successful information graphics from The New York Times and National Geographic magazine with sketches and images not shown in the book.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.